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Abstract. In this work a fractional oscillator equation is considered. This type of equation 
includes a composition of left and right fractional derivatives. A scheme based on the varia-
tional Rayleigh-Ritz method is proposed to obtain a numerical solution of the problem. 

Introduction 

Fractional oscillator equation is a type of equation which includes a composition 
of left and right fractional derivatives. This type of equations appears in theoretical 
fractional mechanics while using the minimum action principle and fractional inte-
gration by parts rule. Riewe [1, 2] was the first author who used this method in de-
rivation of fractional differential equations in mechanics. Later sequential Lagran-
gian and Hamiltonian approaches to the problem were proposed (see for example, 
[3-10]). Using the fixed point theorems [11-13] one can obtain analytical results. 
Unfortunately, this solution is represented by series of alternately left and right frac- 
tional integrals and therefore is difficult in any practical calculations. In order to 
generate analytical solution Klimek in [14] shows an application of the Mellin trans-  
form, but this solution is represented by complicated series of special functions. 

Analytical results obtained so far are inspiration to look for approximate solu-
tions. In [15] some approximate solutions based on Fractional Power Series, for 
a class of Fractional Optimal Control problems is presented. In this paper a numeri- 
cal scheme based on Rayleigh-Ritz method [16, 17] for fractional oscillator equa- 
tion is proposed. 

1. Basic definitions and formulation of the problem 

We recall some definitions of the fractional operators [18]: 
– left fractional Riemann-Liouville integral: 
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– right fractional Riemann-Liouville integral: 
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where Rα +∈ . Using the above fractional integrals we define fractional derivatives. 

The left fractional Riemann-Liouville derivative looks as follows (we have denoted 

the classical derivative as :
d

D
dt

= ) [18]: 
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and for the right fractional Riemann-Liouville derivative we have [18]: 
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where [ ] 1n α= +  ( [ ]α  is the integer part of α ). Now we define the right fraction-

al Caputo derivative [18]: 
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We shall consider fractional oscillator equation of the form: 

 ( ) ( ) ( ) [ ] ( )1 0 , 0,1 , 0,1C
D D f t f t g t t

α α λ µ α− + + = ∈ ∈  (6) 

where , Rλ µ ∈  and f  is a continuous function, fulfilling the conditions: 

 ( ) ( )0 1 0f f= =  (7) 

The analytical solution of (6) in the special case for ( ) 0g t =  was obtained by 

Klimek in [13, 14]. 
To apply the Rayleigh-Ritz method for equation (6) we consider the functional of 
the form: 

 ( ) ( )
1

2 2
0

0

1

2 2
I f D f f f g dt

α λ
µ+

 
= + − ⋅ ⋅ 

 ∫  (8) 



Application of the Rayleigh-Ritz method for solving fractional oscillator equation 31

2. Numerical technique 

In this section we present numerical scheme based on the Rayleigh-Ritz method. 
Let us assume that the solution of equation (6) with conditions (7), can be written 
as: 
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where 
k

a  are unknown constant coefficients to be determined, and ( )kN t  are test 

functions fulfilling conditions (7). We assume that functions ( ) ( )1 , , mN t N t�  

have the left fractional Riemann-Liouville derivatives. 
Substituting (9) into (8), we obtain: 
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Minimizing functional I  leads to the system of equations: 
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with unknowns , 1, ,ka k m= � . 

Calculating derivatives and doing some algebraic manipulations we obtain the 
following system of linear equations: 
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where ( )0k kp D N t
α
+= . 

The system (12) can be written in the matrix form as: 

 aB X C⋅ =  (13) 

where: 
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We get the system of m - linear equations, from which we can obtain coefficients 
, 1, ,ka k m= � . 
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3. Numerical example 

Now, we present the results of calculation obtained by our numerical method. 
As an example we study the fractional oscillator equation in the form: 

 ( ) ( ) ( ) [ ] ( )2 2
1 0 2 sin , 0,1 , 0,1C

D D f t f t t t
α α π π π α− + + = ∈ ∈  (15) 

with conditions (7). 

If order 0α +→  then we get in the limit equation: 
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with the solution: 
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If order 1α −→  then we get the following ordinary differential equation: 

 ( ) ( ) ( )2 2 22 sinD f t f t tπ π π− + =  (18) 

with the solution: 

 ( ) ( )sinf t tπ=  (19) 

To obtain the numerical solution of equation (15) obeying conditions (7) we as-
sume that the solution fm,α  has the form: 
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Let us observe that functions kN  also fulfill conditions (7). Moreover, they have 

the left fractional Riemann-Liouville derivatives 0D
α
+  given as: 
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We calculated some examples for different values of α to show graphically how 
the numerical solutions behave. Approximate solutions of equation (15) and ana-
lytical solutions of equations (16), (18), are presented on Figure 1. 
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Analysing behaviour of the solutions we observe that, if m grows and 0α +→  then 

fm,α tend to solution (17), while if m grows and 1α −→  then fm,α tend to solution (19). 

 

 

 

 
Fig. 1. Approximate solutions of equation (15) for: (a) m = 1, (b) m = 3, (c) m = 10 

and analytical solutions (17), (19) 

a) 

b) 

c) 
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Conclusions 

In this work a fractional oscillator equation was considered. This type of equation 
includes a composition of the left and the right fractional derivatives. The analyti-
cal solution of such an equation is represented by series of alternately left and right 
fractional integrals and therefore is difficult to apply in any practical calculations. 
Numerical solution is an alternative approach to the analytical one. In this study 
the scheme based on the variational Rayleigh-Ritz method was presented to obtain 
a numerical solution of the fractional oscillator equation. Analysing solutions pre-
sented by the graphs we observe that the solutions of fractional oscillator equation 
(15) are located between analytical solutions of equatios (16) and (18) respectively. 
Our results show that the solution of the fractional oscillator equation approaches 
the solution of the classical ordinary differential equation when order 1α −→ . 
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