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Abstract. A fractional differential equation of real order α, containing variable coefficient 

t
β 

and a non-homogeneous term, is solved. The general solution is obtained as a sum of  

Meijer G-functions series determining the solution of a homogeneous counterpart of the 

considered equation and a series representing the particular solution of a non-homogeneous 

equation. The convergence of the respective series is analyzed in detail using theorems on 

properties of Meijer G-functions. As an example, two equations, with β = 0 and β = α/2 are 

studied. 

Introduction 

Fractional calculus is an extension of classical calculus with integral and diffe-

rential operators of non-integer order. It is used in mathematical modelling of vari-

ous phenomena in physics, chemistry, mechanics, engineering, bioengineering and 

economics (compare monographs [1-3], papers [4-6] and the references therein). 

A new class of integro-differential equations emerged as a result of the applica- 

tion of fractional calculus to the construction of models in many fields. The fractional 

differential equations theory became an important and interesting area of investiga- 

tion. Many of the equations considered in literature are solved only numerically. 

Thus, procedures for exact analytical solutions are a subject still under investigation. 

The first monographs concerning these problems include exactness-uniqueness 

results as well as the application of integral transforms and operational procedures 

[7-9]. Here we shall consider a class of linear non-homogeneous equations of real 

non-integer order determined on the finite interval. 

In our previous paper [10] a basic equation with a left-sided Riemann-Liouville 

derivative and variable coefficient was solved in its homogeneous version. The 

general solution of such an equation is the sum of component Meijer G-functions 

series. Their convergence and properties are thoroughly discussed in monograph 

[11]. Now we propose to consider a non-homogeneous equation of this type. We 

present the results obtained for equations with a non-homogeneous term in the form 
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of an arbitrary linear combination of Meijer G-functions. These functions are de-

termined by real vectors, but all the calculations can be easily extended to the case 

of complex vectors. 

The paper is organized as follows. In the next section we recall basic definitions 

of fractional operators and their properties. Section 2 contains the main results 

enclosed in Proposition 2.2 and Corollary 2.3 on the exact general solutions of the 

considered non-homogeneous fractional differential equation. In Section 3 we give 

two examples of the application of the proposed   method to the case of a constant 

coefficient and to the case when application of the reduction properties of Meijer 

G-functions simplifies the solution. The paper closes with concluding remarks and 

an appendix, where relevant properties of Fox and Meijer functions are recalled. 

1. Fractional integrals and derivatives 

In the paper we shall study a basic fractional differential equation with a left 

-sided Riemann-Liouville derivative. Let us recall the definitions of the left-sided 

integral and derivative of non-integer order C∈α  [7, 8, 12]. 

 

Definition 1.1 

Let ( ) 0>αRe . The left-sided Riemann-Liouville integral of order α is defined 

as follows: 

 ( )( )
( )

0,
)(
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1
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  (1.1) 

Using the above definition of a fractional integral, the Riemann-Liouville derivative 

is constructed. 

 

Definition 1.2 

Let ( ) ( )nn ,1−∈αRe . The left-sided Riemann-Liouville derivative of order α is 

given by the following formula: 

 ( )( ) ( )( )xfI
dx

d
xfD

n

n

αα −
++ 








= 00 :  (1.2) 

As we are investigating the fractional differential equations of real order, we shall 

assume what follows: that ( )nn ,1−∈α . A detailed review of the properties of the 

introduced fractional operators can be found in monographs [7, 8, 12]. We quote 

here only one of the composition rules which we shall use in the solution proce-

dure. 
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Lemma 1.3 

(1) Let ( )nn ,1−∈α . Then the following formula is valid for all [ ]bCf ,0∈  and at 

any point [ ]bx ,0∈  

 )()(00 xfxfID =++
αα  (1.3) 

(2) Let ( )nn ,1−∈α . Then the above composition rule is fulfilled for all [ ]bCf n ,0α−∈  

and at any point ],0( bx∈ . 

 

In the case of homogeneous equations considered in paper [10], it appeared that 

their solutions are Meijer G-functions series. Thence, we recall here the definition 

of this class of special functions. 

 

Definition 1.4 

Let m, n, p,  q ,0N∈ qm ≤≤0 , pn ≤≤0  and let C∈ji ba , �be arbitrary complex 

numbers. The Meijer G-function )(
,
, zG
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qp  is given by the following formula [13] 
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where ;...,,2,1 pi = qj ...,,2,1=  and Γ is the Euler gamma function. Contour �  

separates the poles of )( sb j +Γ  and )1( sai −−Γ  functions in the numerator of the 

above complex kernel in the integral. 

Functions of this type were first  introduced by Meijer in 1936 and then generalized 

by Fox in 1961. They are widely applied in probability theory, statistics, anomal-

ous diffusion theory or fractional differential equations theory. We included in this 

paper some relevant properties of this class of functions - they are enclosed in 

Appendix A. 

2. Non-homogeneous fractional differential equation 

with left-sided Riemann-Liouville derivative 

Let us consider the non-homogeneous fractional differential equation of order 

( )nn ,1−∈α : 
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],0[)()()(

,
,0 bxxGxfDx

nm
qp ∈=−+ λαβ

 (2.1) 

where R∈β  and 
nm
qpG
,
,  is the Meijer G-function defined by real vectors a

�
 and b

�
. 

The homogeneous version of such an equation was solved using  the Mellin trans-

form method in our previous paper [10]. The same method yields results in the 

case of an analogous equation with right-sided derivative [14] and in case of equa-

tion with symmetric or anti-symmetric fractional derivative [11,15]. The solution 

of a homogeneous counterpart of equation (2.1) is described in the following prop-

osition. 

 

Proposition 2.1 

Let ( ) ,
2

1
,,1 >−∈ αα nn { } .0>− βα  Then equation 

 0)()( 00 =−+ xfDx λαβ  (2.2) 

has in interval [0,b] a general solution in the form of 
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where component solutions
l

f0  l=1,…,n are given by series 
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with vectors lkA ,

�
, lkB ,

�

 defined as follows 
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[ ] k

k kj R∈−= 1....,,1,0
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and R∈lc
 
arbitrary real coefficients. 

Our aim now is to derive the general solution of the non-homogeneous version 

of equation (2.1). It will consist of the above general solution of a homogeneous 

problem and the particular solution of equation (2.1). Let us apply the composition 

rule from Lemma 1.3 in order to transform the studied equation into its integral form 

generating the particular solution: 
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The solution of equation (2.5) can be written as a formal series 
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and vectors ba
��

,
 
belong to the 

pR and 
qR

 
spaces respectively. 

To obtain an exact analytical form of particular solution (2.6), we should now cal-

culate the fractional integrals on the right-hand side of formula (2.6) and analyze 

the convergence of the above series. Let us begin with k = 0 and calculate the para- 

meters determining the properties of Meijer G-function 
nm
qpG
,
,  [13]: 
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We shall assume that the Meijer G-function in equation (2.1) fulfills the conditions 

 1−<+∆< µγϑκ  (2.12) 

According to Theorem A.2, the first integral (when k = 0) exists, provided the con- 

ditions are valid:  
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when  .1,00* −<<∆= µ,a  Both conditions (2.13) and (2.14) are a simple result 

of assumption βκ −< 1 . The result of fractional integration in this case is also 

the Meijer G-function 

 
[ ]

[ ]







−
=








+

++
−−

+ αβ

ββαβα

;

;1,
1,1

,
,0

b

a
xGx

b

a
xGxI

nm
qp

nm
qp

�

�

�

�

 (2.15) 

When k = 1 we obtain the following values of coefficients determining the result 

of the previous integration 
nm

qpGxI
,
,0

βα −
+ : 
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Let us note that for k = 1, the assumptions of Theorem A.2 are fulfilled, namely  

since we have { } 0>− βα  and add 1ϑκ < , we obtain the following conditions valid: 
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in the case 1,00or0 ** −<≥∆=> µ,aa  and 
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in the case ,0,0* <∆=a  where .1−<µ  

From the above inequalities and from Theorem A.2 it follows that the second 

term in series (2.6) is of the form: 
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Let us now consider arbitrary integer k. The parameters determining the properties 

of the respective Meijer G-function resulting from the (k−1)-th integration are as 

follows: 
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In this general case we shall calculate the fractional integral of order α of function 

( ) nm
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k
GxIx

,
,0

βαβ −
+

− . Similar to case k = 0,1 discussed previously, the assumptions of 

Theorem A.2 on fractional integration are fulfilled. The following inequalities are 

implied by condition kϑϑκ =< 1 : 
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provided ,0and0* <∆=a  where 1−<µ . The result of the integration is the follow- 

ing Meijer G-function 
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with vectors 11, ++ kk FE
��

 given by formulas 

[ ]ajeE kkk

����
;)( 111 +++ −+= αββ  

[ ]111 )()(; +++ −+−= kkk jebF
����

αβαβ  

We have explicitly calculated all the elements of the series describing the particu-

lar solution in terms of Meijer G-functions 
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We shall now analyze the convergence properties of the above series. To this aim 

we apply the comparison test. When 11],min[ ϑϑϑγγκ =<=< k  and 0* >a  or 

0* =a , ,1−<+∆ µγ  we obtain the following estimation for the modulus of the 

respective Meijer G-function (we apply Theorem 3.4 from [13]): 
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where coefficients kA ,γ  are constants dependent on γ  and k. Let us calculate these 

coefficients. According to the calculations enclosed in the proof of Theorem 3.3 

from [13] it is a product of coefficients kA ,1  and kA ,2 , given below 
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where τ > 0. Using formulas (2.28)-(2.30) in the estimation of solution (2.27) we 

obtain a majorizing series in the form of   
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The above majorizing series is absolutely convergent for ],0[ bx∈  using the 

d’Alembert test, provided  eigenvalue λ obeys the inequality: 
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Remark: the above restriction can be relaxed using the fixed point theorem. We 

shall not discuss the details of the procedure in this paper leaving it for the next 

article. In the formulation of the proposition concerning the solution of equation 

(2.1) we shall omit assumption (2.32). 
 

Let us now check explicitly that series (2.27) solves equation (2.1).  We denote the 

k-th element of the series as follows 
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and calculate the result of the action of operator 
αβ
+0Dx  on this component: 
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From the theorem on the differentiation of Meijer G-functions (Theorem 2.8 in 

monograph [13]) it follows that 
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kqkpG  can be rewritten using the reduction property given in Ap-

pendix A so as to obtain the formulas: 
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valid for any 0N∈k  with vectors aE
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=0  and bF
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=0 . 

We now apply the derived formulas for terms kDx ψαβ
+0  and obtain for series (2.27)  

the following result 
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which after substitution to equation (2.1) yields 
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From the above considerations the proposition describing the general solution of 

equation (2.1) follows. 
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Proposition 2.2 

Let ( )
2
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,,1 >−∈ αα nn  and .0}{ >− βα  Let 
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,  be an arbitrary Meijer 

G-function determined at least for ],0( bx ∈  by real vectors a
�

 and b
�
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assumptions of Theorem A.2 and condition 1ϑκ < , where κ  and 1ϑ  are given by 

formulas (2.10, 2.17). The differential equation of order α: 
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and arbitrary real coefficients R ∈lc . 

The above proposition can be easily extended to the case where the non-homoge-

neous term on the right-hand side of equation (2.1) is a linear combination of the 

Meijer G-functions obeying the corresponding assumptions. 
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Corollary 2.3 
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with vectors described in detail  by Proposition 2.2. 

3. Examples 

We shall study in detail the two example equations solved in Proposition 2.2. 

We chose such values of parameter β to which the reduction properties of  Meijer 

functions can be applied. 
 

3.1. Example: case β = 0. Let us solve equation (2.1) when :0=β  

 ],0[)()()(
,
,0 bxxGxfD

nm

qp ∈=−+ λα
 (3.1) 

Assumptions of Proposition 2.2 read 
2

1
>α  and 1ϑκ < . Following the results of 

paper [10], we obtain the general solution of the homogeneous part of equation 

(3.1) in the form of a linear combination of Mittag-Leffler functions [7]: 
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3.2. Example: case β = α/2. In the next example, we study case 2αβ = . Let us 

observe that according to assumption ,0}{ >− βα  it requires ( )1,0∈α . Thus, 

equation (2.1) becomes an equation of fractional order 







∈ 1,

2

1
α  and we assume 

that the conditions of Proposition 2.2 regarding a Meijer G-function on the right-

hand side are fulfilled: 
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The solution described in Proposition 2.2 includes the general solution of the ho-

mogeneous part: 
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where the component series was derived in paper [10] 
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with vectors 1,1, , kk BA  given by formulas 
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The second part of the solution is provided by Proposition 2.2 as the following 

series 
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with vectors 11, ++ kk FE
��

 in the form of 
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Concluding, the solution of equation (3.6) is the sum of the above series (3.8) and 

(3.9) 

 )()()( 1
01 xfxfcxf s+=  (3.10) 

4. Final remarks 

We have introduced a method of solving a basic non-homogeneous fractional 

differential equation. It includes application of the integration properties of Meijer 

G-functions. A class of equations including as a non-homogeneous term an arbitrary 

linear combination of the Meijer functions, is solved applying the discussed proce-

dure. Careful analysis shows that the solution technique  can be extended to equa- 

tions with Fox functions in the non-homogeneous term. Our further goal is to apply 

the results of the considered equations to a class of sequential non-homogeneous 

fractional differential equations. 
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Appendix A 

Here we recall the basic properties of Fox and Meijer functions, which we ap-

plied in the procedure of solving the fractional differential equations [13]. 

 

Property A.1 

(1) If 1abq = , then the following reduction formula holds  
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provided .and1 mqn >≥  

(2) If 1bap = , then the reduction formula holds 
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provided .and1 npm >≥  
 

Theorem A.2 

Let ( ) .0and0where, >∈>∈ σωαα CC ,eR  If the conditions hold 
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provided
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provided ,0,0* <∆=a  where ( ) 1−<µeR , 

then the left-sided fractional integral of  the Fox H-function exists and is given by 

the formula below: 
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