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Abstract. In article method of finding of expected incomes in systems of HM-network of 

arbitrary topology when incomes from transitions between network states are stochastic 

variables with given mean values is proposed. For expected incomes the system of linear 

non-homogeneous ordinary differential equations was obtained, to solve it we can find in-

comes in network systems. 

Introduction 

Markov queueing networks (QN) with incomes were examined in works [1-3] 

at the first time. They are described with help of Markov chains with continuous 

time and incomes which were introduced by R. Howard [4]. So at the recent time 

they are called HM(Howard-Matalytski)-networks [5, 6]. Before investigation of 

closed networks with account number of states was carry out. Herewith the next 

cases were examined: a) incomes from transitions between network states depend 

on states and time or b) incomes are stochastic variables (SV) with known finite 

moments of the first and the second orders.  

For expected incomes of network systems in case a) the system of difference- 

-differential equations which are reduced to the system of linear non-homogeneous 

ordinary differential equations (ODE) can be obtained. For their solution different 

methods - method of multidimensional z-transformations and known methods: me-

thod of Laplace transformation, matrix method, numerical methods were proposed 

[7-9]. 

In [5, 10] approximate relations for expected incomes and income variations in 

systems of exponential HM-networks in case b) were obtained. Technique of re-

ceiving of these relations is based on interval partition of the network functioning 

by big number m of small intervals of size �t, income estimation on every interval 

and summing of these incomes by means of passage to the limit m→∞, �t→0. 

Herewith mean value of messages in network system in unsteady condition was 

found with help of developed recurrence by time moments method. Notice that 

different methods of analysis and optimization of Markov HM-networks and their 
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application were described in [11]. In the present work method of finding of expec- 

ted incomes of network systems in case b) which is based on solution of the linear 

non-homogeneous ODE, which were received for expected incomes and mean values 

of messages, is proposed. 

1. Finding of expected incomes in systems 

Let us examine open exponential QN of arbitrary topology with one type mes-

sages which consists of n queueing systems (QS) S1, S2,…,Sn with mi service chan- 

nels in system iS , ni ,1= . Denote via ))(...,),(),(()( 21 tktktktk n=  - vector of net- 

work states, where )(tki  - message number in system Si (in queue and service) at 

the moment t. Poisson flow of messages of the rate λ enters the network. Service 

rate of messages at the moment t �i(ki(t)) in system Si depends on message number 

in this system, ni ,1= . Message when transiting from one QS to another brings to 

the last system some stochastic income and income of the first system reduces by 

this value correspondingly. 

Let us consider dynamics of income changes of some network system Si . De-

note it’s income at the moment t as Vi (t). Let at the initial moment income of sys-

tem equals Vi (0) = vi0. Income of this QS at the moment t + �t can be presented as 

 ),()()( ttVtVttV iii ∆∆+=∆+  (1) 

where �Vi(t,�t) - income change of system Si on time interval [t, t+�t). For finding 

of this value we write probabilities of events which can appear during time t∆  and 

changes of incomes of system Si  which are connected with these events. 

1. Message from the outside with probability )(0 totp i ∆+∆λ  will enter to system 

iS  and will bring to it income of size ir0 , where ir0  - RV with mathematical 

expectation (m.e.) { } ii arM 00 = , ip0  - probability of message enter from outside 

to the system Si , ni ,1= . 

2. Message from the system Si with probability )())(())(( 0 totptkutk iiii ∆+∆µ  will 

pass to the outside and income of the system iS will decrease by value 0iR , 

where 0iR  - RV with m.e. { } 00 ii bRM = , 0ip  - probability of message leaving 

from system iS
 

to the outside, ni ,1= , 




≤

>
=

,0,0

,0,1
)(

x

x
xu  - Heavyside function. 

3. Message from the system Sj with probability )())(())(( totptkutk jijjj ∆+∆µ  will 

pass to the system Si and income of the system Si will increase by value jir  and 

income of the system Sj will decrease by this value, where jir  -  RV with m.e. 



Analysis of HM-networks with stochastic incomes from transitions between states 107

{ } jiji arM = , jip  - probability of message transition from the system Sj to the 

system Si, jinji ≠= ,,1, .  

4. Message from the system Si with probability )())(())(( totptkutk ijiii ∆+∆µ  will 

pass to the system Sj and income of the QS Si will decrease by value ijR  and in-

come of the system Sj increase by this value, where ijR  - RV with m.e. 

{ } ijij bRM = , nji ,1, = , ji ≠ . 

5. State changes of system Si on the time interval [t,t+�t) with probability 
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ni ,1= . 

Besides that during each small time interval t∆  the system Si increases its in-

come by value ,tri ∆  where ir  - RV with m.e. ii crM =}{ , ni ,1= . Let also sup-

pose that RV jir , ijR , ir0 , 0iR  are independent with respect to RV ,ir  .,1, nji =  

Evidently that jiji Rr =  with probability 1, i.e. 

 njiba jiji ,1,, ==  (2) 

Then from said follows 
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 (3) 

Under fixed realization of the process )(tk  and taking to account (3) it can be 

written: 
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Average the last relation by )(tk  with taking to account normalization condition 

( ) 1)( ==∑
k

ktkP  for income change of system iS  we will obtain 
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Let the system iS  contains im  identical service channels, time of message ser- 

vice in every channel is distributed under exponential law with parameter iµ , .,1 ni =  

In this case  
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Let us suppose that averaging of expression ))(())(( tkutk iiiµ  brings 

)),(min( iii mtNµ , i.e.  

 )),(min()),(min( iiii mtNmtkM =  (4) 
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where )(tNi  - average number of messages (waiting and serving) in the system iS  

at the moment ,t  ni ,1= . Taking in account this assumption we obtain the next 

approximate relation 
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 (5) 

Since Poisson flow of messages with rate λ  enters the network, i.e. probability 

of entering of l  messages in the system iS  during time t∆  has the appearance 

( ) tp
l

i
l

ie
l

tp
tP

∆−∆
=∆ 0

!
)( 0 λλ

, ...,2,1,0=l , so average number of messages which en-

tered to the system iS  from the outside during time t∆  equals tp i∆0λ . Denote the 

average number of busy service channels in system iS  at the moment t  as )(tiρ , 

ni ,1= . Then ttii ∆)(ρµ  - average number of messages that left the system iS  dur-

ing time t∆  and ∑
≠
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∆
n
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j

jijj tpt
1

)(ρµ  - average number of messages that entered in the 

system iS  from another QS during time t∆ . So 
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whence with 0→∆t  system of ODE for )(tN i  follows: 
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It is impossible to find variable )(tiρ  exactly so as we did earlier we approximate 

it by expression 
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Then system of equations (6) will take on form 

 iiii

n
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j

jjjij
i pmtNmtNp

dt

tdN
0

1

)),(min()),(min(
)(

λµµ +−=∑
≠
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, ni ,1=  (7) 

This system is system of linear ODE with discontinuous right parts. It’s neces-

sary to solve it by means of segmentation of the phase space by set of the areas and 

finding solution in each of them. System (7) can be solved for example by using 

means of system of computer mathematics Maple 8. 

Let us introduce denotation )}({)( tVMtv ii = , ni ,1= . From (1), (5) we obtain 
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Then pass to limit with 0→∆t  we receive non-homogeneous linear ODE of the 

first order 
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Specify initial conditions 0)0( ii vv = , ni ,1= , it is possible to find expected 

incomes of network systems. 

If the network is functioning so that queues are not observed in it upon the 

average, i.e. )()),(min( tNmtN iii = , ni ,1= , then systems (7), (8) will take the 

appearance: 

 iii
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System (9) can be rewrote in matrix form 

 ftQN
dt

tdN
+= )(

)(
 (11) 

where ))(),...,(),(()( 21 tNtNtNtN n
T = , Q - quadratic matrix which consists of ele- 

ments ,jijij pq µ=  if suppose 1−=iip , nji ,1, = , f - column vector with elements 

ip0λ , .,1 ni =  Solution of the system (11) is 

 ∫
−+=

t

tQQt defeNtN

0

)()0()( ττ
 

where )0(N  - some given initial conditions, but finding of elements of matrix Qte  

is difficult problem even for rather small values of n. 

 

 

Fig. 1. Structure of the network with central QS 

Let us consider closed network with central QS that consists of n systems (Fig. 1). 

Let suppose that queues are not observed in peripheral systems of the network under 

the average, i.e. )()),(min( tNmtN iii = , 1,1 −= ni , and central QS functions in the 

condition of heavy traffic, i.e. nnn mmtN =)),(min( . System (7) in this case will re-

write as 
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General solution of the system (12) with initial conditions niNi ,1),0( = , equals 
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Integrate given ODE with initial conditions nivv ii ,1,)0( 0 == , we will obtain 
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2. Numerical example 

Let us examine the network which was described in the previous section with 

30=n , 61=K , where K - the number of messages in the network. Service rates of 

messages in channels of network systems equal: ,42919131 ==== µµµµ  ,66 =µ  

,5161093 ==== µµµµ  ,228262421141284 ======== µµµµµµµµ  ,125 =µ  

,727 =µ  ,323222018171511752 ========== µµµµµµµµµµ  ,4030 =µ  

channel number in the central system − 230 =m , probabilities of message transitions 

between network QS – 29,1,1,291 3030 === ipp ii , define also ,30,1,1 =−= ipii  

the rest of probabilities 30,1,,0 == jipij . Let also ,29,1,2)0( == iN i  3)0(30 =N . 

Charts of average number of messages in the QS are shown in Figures 2-5. 

 

 

Fig. 2. Average number of messages in network systems 10,1, =iSi  
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Fig. 3. Average number of messages in network systems 20,11, =iS i  

 

Fig. 4. Average number of messages in network systems 29,21, =iS i  
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Fig. 5. Average number of messages in central QS 

Specify values of m.e. of incomes from transitions between network states: 
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Then using relation (13), (14) with initial condition ,29,1,100)0( == ivi  

150)0(30 =v , the expressions for expected incomes of network systems were 

obtained. For example expression for expected income of central system is 

1.158702.286541.937.823
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Charts of expected incomes of the network systems are shown in Figures 6-9. 
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Fig. 6. Expected incomes of the systems 10,1, =iSi  

 

Fig. 7. Expected incomes of the systems 20,11, =iSi  
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Fig. 8. Expected incomes of the systems 29,20, =iSi  

 

Fig. 9. Expected incomes of the central QS  
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