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Abstract. The paper deals with the stationary problemseat lsonduction in a periodically
layered half-space with cylindrical hole. The latesurface of the hole is assumed to be
kept at zero temperature or be thermally isolaidd: boundary plane with circular hole is
heated by a given temperature. The problems axedalithin the framework of the ho-
mogenized model with microlocal parameters [1, THe influences of geometrical and
thermal parameters of the composite constituentemperature and heat flux distributions
are investigated.

I ntroduction

The analysis of temperature and heat flux distiiimst in laminated composites
has been a subject of increasing importance, dtigetexpanding use of such ma-
terials in advanced engineering applications. Meeeomany rocks and soils are
stratified and clearly piece-wise homogeneous. @ha® various metamorphic
rods with fabrics having parallel arrangementslaf minerals (shale/sandstone,
slate/ sandstone, varved clay, flotation wastes).

This paper is devoted to the analysis of axisymicadtstationary problems of
heat conduction for a periodic two-layered halfespavith a cylindrical hole. The
hole is located perpendicular to the layering amol tases of boundary conditions
on the lateral surface of hole is considered: £&tp temperature (Problem 1), (2°)
zero radial component of heat flux (Problem 2). &toer, the perfect thermal
bonding between the layers is taken into accoumt. Goundary plane with a circle
cut-out is assumed to be kept in a given tempezafline considered problem is
determined within the framework of the classicatattions by partial differen-
tial equations with discontinuous and rapidly datithg coefficients. The compli-
ance of continuity conditions on interfaces is ctiogped for analytical and nu-
merical approaches, so the problem will be solvgdubing the approximated
model with microlocal parameters [1, 2]. In theead periodically two-layered
composites the governing equations of the homogdnizodel are expressed by
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unknown macro-temperature connected with averagetpérature and certain
extra unknown called the microlocal parameters limportant that the continuity
conditions on interfaces are fulfilled within thernogenized model. This model
has been applied in many thermal and mechanichlge of periodically strati-
fied composites, (see, for a partial review, [3, Fhe considered boundary value
problems will be solved by using the Weber-Orr gnéé transforms (see, [5-8]).
The exact solutions within the framework of the log@nized model obtained in
integral forms will be analyzed numerically and theults will be presented in the
form of figures. Especially, the influence of gedriwal and thermal properties of
the composite constituents on the temperature aad flux distributions will be
investigated.

1. Formulations and solutions of the problems

Consider a rigid, periodically layered half-spadéwa cylindrical hole normal
to the layering. The constituents of the body asumed to be isotropic and ho-
mogeneous heat conductors. leetbe the radius of holé, I, be the thicknesses of
the subsequent layers= |;+l, be the thickness of the fundamental lamina (the
repeated unit). LeK;, K; denote the coefficients of heat conductivitieshef sub-
sequent layers. Le(tr, @, z) be the cylindrical coordinate system with the axis

being the symmetry axis of the hole, and r& a represents the upper bounda-
ry surface of the body (Fig. 1).

z

Fig. 1 The scheme of stratified half-space

The boundaryz= 0Or=a is assumed to be kept at given tempera&;r(e),

and the lateral surface of the hole is kept at zengperature (Problem 1) or is
thermally insulated (Problem 2). The ideal therew@htact between the layers be-
ing constituents of the composite is taken intooaot. The mentioned above con-
tinuity conditions on the interfaces lead to sorificdity in analytical and numer-
ical approaches. For this reason the homogenizetehwith microlocal parame-



On heat conduction in a periodically layered spaitie a vertical cylindrical hole 133

ters is suitable to the approximated formulationtte# considered problem. We
briefly recall only the governing relations of thmedel for the axisymmetric case
(for a more detailed treatment see the followinggpa [1, 2, 9-12]). The tempera-

ture T(r,z) and the temperature gradient is approximated |asv® [12]:

T(rn2)=6(r2)+ N 31 3=6( 1}
rz rz Iz r 1
aTgr, ):aegr, )’ aT((t, ):aggz’z)w(z)y(r,z) (1)

where 4(r,z) is an unknown function (called the macro-tempeggtuy(r,z)

stands for the unknown thermal micro-parameter, a(z) is a givenl periodic
function taken in the form

z-0.5l, for 0< z<|,
h(z)= ﬁ . forl, <z <l )
h(z+1)=h(2)
where
I
n=+ 3)

The governing equations of the homogenized modil microlocal parameters
for the stationary axially symmetric case takeftren [5]:

2
K(ae 106 aej [K]ay

or? rar az 4)
Ky=-[K]=
4 []62
where
R 2
R =nK, +(1-1)K,, [K] =7 (K, -K,), K=r7K1+1’_7,72K2 5)

By using the algebraic equation {4he microlocal parametey can be elimi-
nated, what it leads to the equation for unknowenméemperature:

2 2
a H+la—0+K_lKDa 0

— =0 6
o? ro a’ ©
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where

ko=g -IKE - KK, @
K (1_/7)K1 +’7K2

The heat flux vectoq(j) (r,z), i =1,2in the layer of-th kind has the form:

q(j)(r,z)=[cfj)(r,z),(f)(r,z)] (2= Iﬁ%, ﬁ)(rj:—%g (8)

The equation (6) together with (8) stand for theegaing relations of the sta-
tionary axisymmetrical heat conduction problemsrgiated within the frame-
work of the homogenized model. From (8) it is sdwt the continuity conditions
on interfaces are satisfied.

The considered problems are described by the follgwoundary conditions
and the regularity condition in infinity:

Problem (1)
G(r,0)=6,(r).for r>a 9)
6(a,z)=0, forz>( (10)
limé(r,z)=0, for r=0 (11)
and
Problem (2)
O(r,0)=6(r).for r>a (12)
%(a, z)=0, for z>( (13)
or
limé(r,z)=0, for r=C (14)

Z 00

< 00,

where g, (r) is given function satisfies the conditiW Gy (r)dr

To solve the above formulated problems. the Welreri@egral transforms
will be employed [5-8]. For this aim introduce tledowing notations
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§(E,Z)=V\60[0( r,z);r_> (61 QF(r,dr

“[re
° (15)
e

2)=W,[6(r.2;r- &]=|rGy(éréAB(r, 2 a

where
C,(£r€)=3,(ENV(E-3E Y, € ) u=0v =01 (16)

and
J, (0, Y, (O are Bessel's and Neumann's functions, respectively

The inverse transforms take the form [5-8]:

6(r.2) =W [8(6. i€ - 1]=[ ¢ (Cm(fr"ta) 96,3 A7)

and

6(r.2) =W [6°(£,9:¢ - rH; ¢ le(cng)iré?; PAGELIC

The important relations from the point of view betconsidered problems are
the following expressions [5-8]:

Woo[Boe(nZ; r_‘fJ:—gg a’j_fz\/yo[g( fa? - {J’

9( ) (29)
W, [ BE( T, 2); E]- 5 ~&W,[0( 1 2; r- €&
where
Boe(r,z)zaze(r’z) ,106(r.2) (20)

or? r oo

The equations (19) and boundary conditions (10) (@3J lead to the applica-
tion of Weber-Orr transformy [l in the case of Problem 1 and transform
Wo [ in the case of Problem 2, respectively. Form (1Qp), (13) and (6) it
follows that

[K 1KD;ZZ {ZJ(H_(E,Z),ép(E,z)) =0 (21)
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By using equation (21), boundary conditions (9),)(&nd relation (17) we ar
rive at the solution to Problem 1 in the form:

e valateye - O
o(ér,éa) _ K (22)
A+ (Eg (E)ex{_\/;&} *

where
G, (&) =Wyo[ 6,(1); 1 - &] :ICOO(Er,{a) 10 o(r ) dr (23)

o'-—.8

From equations (22), (8) and the following relatj8h

00 (%€ ] =€ X Gy, (€ 5 3 (24)
we obtain the components of heat fluxes in thedayfj-th kind as follows
(i) _ | Doo Coogr{a) 2 _ <
)= ~RR g e aamn e
(25)
K

0(r,z)=z Cf:j‘z‘g 3 EHE(E)eX{—\/KKD EZ}GE (26)

i (¢a)
where
6y (&) =Wy 65(1); 1 €] =TrC01({r,Ea)90(r)dr (27)
Using equations (26), (8) and (24) we obtain:
(i) - _ IR 5 f C:01(<tr'<ta) 20 \/K
R e OB (f)eXp[ e f?|*
- (28)
Cn(fr,fa) fzgg(g)ex{_\/%gzlog, j=12

0)(r.2)= K. [
VDK e
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The equations (22) and (25) stands for the solutidRroblem 1 in the integral
forms. The equations (26) and (28) are the solutibroblem 2. The obtained
results for some case of boundary temperaturebeiinalyzed numerically.

2. Special cases and numerical results

As a special case the distributions of temperadneheat fluxes in the periodi-
cally layered half-space with cylindrical hole cad$y a constant temperatufg
ontheringb<r<c, z=0 will be considered. So, the functicﬁg(r) in boundary
conditions (9) and (12) is assumed in the form

G (r)=8,H (r -b)H (c -r) (29)

where J, is given constanti([) is the Heaviside step function, abdc are given
constants such tha<b<c.

The function Ho(r) defined by (29) will be taken into account in gwutions
to Problem 1 and Problem 2.

Problem 1
Substituting (29) into (23) and using (16) as wadl the following relations
[13]:

[x0, ()= & 3.(3, | &) ax= ax()a Re>-: (30

we obtain that
190

6,()="2{Yo(a)[ca(¢ 9~ bI¢ B]- I H ok Jo b )§ @D

The solution of Problem 1 for the considered casdetermined by equations
(22), (25) and (31) in the integral form. The irredg will be calculated numerical-
ly. For this aim the following dimensionless vatixh and constants are intro-
duced:

F:L’ 2:51 5:5’6_9, é:_c1 Jz_l (32)
a a a a a a
Using (32) and (31) form equations (22) and (259libws that
= C_(érd) R ;
6(r.z)1 8 = |7 —oray| Yol )(-P3( ) + <€) -
et e
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) gy e o)
_ (34)
o) e o [ € 9
o (1 z>/(ﬂoKﬂ):K—gIJ§C;§ii;§})w[%(f)(—m(?)vcg(*))-(35)

The integrals in equations (33)-(35) were calcdatemerically and the results
are presented in the forms of figures.

a) b)
z Z

o 1. Dv 1.‘20 1.110 ‘ 1}60 1.‘80 2.00 2.‘20 I 2}40 o 1. Q/ 1.‘20 1.‘40 1.60 1.‘80 2.00 2.‘20r 2.‘40
b=1.5c=2.0K /K,=1.07= 0! b=158=2.0K /K, = 4.07= 0.
o

e(r,%)/éo

b=1.5c= 20K, /K,=8.07= 0.
Fig. 2. The dimensionless temperatéte,9, for Problem (1) and

b=1.5,¢=2.0,7 = 0.5 Fig. 2a forK, / K, =1.0 Fig. 2b for K ,/K, = 4.0, Fig.
2cfor K,/K,=8.0



On heat conduction in a periodically layered spaitie a vertical cylindrical hole 139

The dimensionless temperatufé &, is presented in Figures 2a, b, c (the isother-
mal curves) forb =1.5,¢ = 2.0,.7 = 0.L Figure 2a presents the isothermal curves
for K,/K,=1.0 (for the homogeneous half-space), Figure 2b Kor K, =4.0,
Figure 2c forK, / K, =8.C. It can be observed that the greater values oflithen-
sionless temperature under the heated sedbiar) are for the homogeneous body
and they decrease together with increase of the Kgt/ K, .

The dimensionless radial heat quxqg)/ J,K") as functions ofz are pre-
sented in Figures 3a, b, ¢ ftw=1.5,¢=2.0,7 = 0.t and r =1.75. The case of
homogeneous body is shown in Figure (3%1/ K, =1.0), Figure 3b presents the
radial heat fluxes forK,/K, =4.0, Figure 3c forK,/K,=8.0. For the layered
structure of the body the radial heat fluxq;(é) /(ﬂoKD) , j=1,2 are discontinu-
ous on the interfaces. The values of jumps inceagth increase of the ratio
K,/ K,. The upper curves represent the radial heat fluxése layer of first kind
(j=1), the lower forj =2.

a) 07 ) 07 - .
06 7 b=15¢c= 2, 061 /bK=1:-i,%; 2= .
0.5 1 K,/K,=1.07=0.E 05 - K =4 :
047 04 P (r=1752) [8,K)
%37 03
0n | AV(r=1752) 1(8,K') 0z
0.1 -/\ 0,1

0 i . , 0 | |
0 02 05 07 zd 0 025 05 0752 1

0) 0,7
0671 1 b=15c=2,
0,5 K,/K,=8.07=0.
04 1 o (r=1.752) /(8,K’)
0,3 1
0,2 1
0.1 ULy

0

0 0,25 0,5 075 Z 1

~ Fig. 3. The dimensionless radial heat flqrgé) /(ﬂOKD) for Problem (1) and
b=15¢=20 1n=05;Fig. 3afor K, /K, =10 Fig. 3b forK /K, = 40, Fig.
3cfor K,/K, =80
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The dimensionless heat quxq§) /(ﬁOKD) as functions of dimensionless radi-

usr for b=1.5¢c= 2.07 = 0.t and for cases of the ratid, / K, =1.0; 4.0; 8.(
and the dimensionless deptlas 9; 29; 50; 100. It is seen that the normal to the
layering component of heat flux changes its singeurthe tips of heated area.

5
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47q£”(r,z) 1:2=0
——— 1 5.5
9K 2:2=20
3] 2| 3:z=50
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07 T
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2
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b=1.5c= 2K /K,=1.0
n=0.50=0.05
5
o) (¥ 5
1% (rlz)
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qgj)(F,Z) 1 1:Z=
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3 4:72=100

4 _

r
5 1,75 2l5
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Fig. 4. The dimensionless heat flu?gj) /(ﬁoKD) 613, for Problem (1) and

b=15¢=20,

Problem 2

n =05 6= 005, Fig. 4afor K, /K, =10 Fig. 4b for
K./K, =40, Fig. 4c forK /K, = 8.0, and the dimensionless depths

2=0,2);%;100
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Let the boundary temperatut(r) be given by equation (29). By using (27),
(29) and (30) we obtain

6(6) =27 [(€ (-pa() + c2(£) - A &)(- bYey + o })] 30

Substituting (36) into (26) and (28) and using (82pllows that

FF Yo wE)-ba(9) +eal))- .
a(¢)-on( 1) o ) Jod [ K¢ Ja
0, (8)(-5 (1) + ev(€)) Jexd - £ e
@ (r2)1{K) = [ {g‘zf(l) #[x(e)(-ba() +e(€) o

The integrals In equations (37)-(39) have calcudlatemerically and the results
are presented in the form of figures.

Figures 5a, b, ¢ show the distribution of dimenkdies temperaturé(r“,z)/ﬁo

(the isothermal curves) fob=1.5, ¢ = 2.0,7 = 0.! and three cases of the ratio
K,/K,=1.0;4.0; 8.C. Figure 5a presents the solution for the homogaesé&alf-

space.
The dimensionless component of heat flux normal the layering

q.’ (r,2) /(:90 KD) as a function off is presented in Figures 6a, b, ¢, on the four

cases of depthsz=9; 20; 50; 100 for three cases of the ratio
K,/K,=1.0; 4.0; 8.0

a)
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0.6

0.4+

&
0.2 o

T T T T T T
1 12 14 =16 18 2 22 24

s F
b=1.5c=2.0K, /K,=1.07= 0.

b)

©)

r

T | S— T - T T
1 12 14 16 18 2 22 24

b=1.5¢c=20K, /K,=8.07= 0.

~ Fig. 5. The dimensionless temperatéi¢.J, for Problem (2) and
b=15 ¢ =20 17 =05;Fig. 5aforK, /K, =10, Fig. 5b forK /K, = 4.0, Fig.
5¢ for K,/K, =80
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The dimensionless radial component of heat X (F, z) /(190 KD) as a func-
tion of z is presented in Figures 7a, b, c, for1.5 ¢c=2.0, n=05r=17
for three cases of the ratig, / K, =1.0; 4.0 ; 8.0 The radial heat qu>q(j)is dis-

continuous on the interfaces and the jumps takeytbatest values near boundary
z=0forK,/K,=8.C

b=15c=2K, /K,=1.0 b=15¢c=2K /K,=4.0
n=0.50=0.05 n=0.50=0.05
0 > (i)
(¥ 5 7=

47qz (r,z) 1 1ZV o

5| 9K 5 2:2=20

5 | 3:Z2=50
3 4:72=10

1,

O ————% 4 r

/ 0 T

11 25 /15 1,75 5

-2

_37

-4

b=1.5c=2K, /K, =8.0
n=0.50 = 0.05

Fig. 6. The dimensionless heat flqgj) /(ﬂOKD) 6135, for Problem (1) and

b=15¢=20 /=05 &=005;Fig.6afork,/K, =10, Fig. 6b for

K./ K, =40, Fig. 6c forK ,/ K, = 80, and the dimensionless depths
2=0,;2,;5;100
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a)

b=1.5¢c=2,
/K,=4.0/7=0.5

1.752) [(,K’)

b)
08 - 08
07 b=15¢=2, 07
06 - K,/K,=1.0/7=0E ¢ K,
05 - 051 (/..
0,4 - 0,4 - q” (1=
0,3 - 0,3 -
02 | a(r=1752) (5K’ 02
0.1 K\ 0.1 1
0 ‘ ‘ ‘ 0 ‘
0 025 05 075 Z1 0 025
9 08 -
07 b=15¢=2,
06 | 1INy \K1/K2:8.O,/7 = 0.5
0,5 - g (F=1.752)
04 -
0,3 -
0,2 -
0.1 -
0 ‘ ‘ ‘

0

0,25

0,5

075 Z 1

05 075 Z1

1(8,K')

Fig. 7. The dimensionless radial heat flquU /(ﬂOKD) for Problem (2) and

F=175b=15 ¢ =207 =05 andFig7a-foK, /K, =10, Fig 7b - for
K,/K, =40,Fig7b-forK,/K, =80

Final remarks

The obtained analytical solutions for temperaturd heat flux distributions in
the periodically two-layered half-space with cylileadl hole allow on the numeri-
cal analysis of influence of the composite struetan the thermal fields. The re-
sults presented in figures showed that the laysnedture and thermal properties
of the compaosite constituents have an essentiiein€e on the radial heat fluxes
for both considered problems.
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