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Abstract. The site percolation, where the long-range cornvigcis the result of the occu-
pancy probability defined on a site, is studiedtlomlLxL square lattice. Method of deter-
mining of the location of the percolation pseudme#holdp(L) is proposed and the influ-
ence of a barrier on the percolation pseudo-timesk analysed.

I ntroduction

The basic mathematical model of connectivity idechlpercolation theory. It
was proposed by Broadbent and Hammersley [1] tdysthe flow of fluid in
a porous medium with randomly blocked channelscé&ithat time percolation
techniques have become a corner stone of the tloéaligordered media [2].
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Fig. 1. The square grid on thel system. The vertical thick line denotes a batier
whereas dots are occupied sites. The thin lingsatelthe spanning cluster created by
randomly chosen sites
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Let us take a grid and occupy sites on this grith &i probabilityp. For small
valuesp one can see mostly isolated occupied sites withsional small groups of
them. As the occupancy probability increases, gsayrpw forming some clusters.
Of course in the second limit, wherr 1, every site is occupied. Thus, there exists
such a value op for which one of the clusters starts to connegtosfie edges of
the square, which in practice means a maximal elustze at a given squakeL .
This is called the spanning cluster (or the inéirgtuster) as it spans the entire lat-
tice (arbitrarily, we consider only the clustersinecting the left and right edges).
This particular value of the occupancy probabilitgll defined forlL—oo, is known
as the percolation threshgtd So, the long-range connectivity is the resulthaf
occupancy probability defined on a site. It cardbecribed in terms of the proba-
bility of appearance of spanning clusieas a function op. The exact value of the
threshold depends on the kind of grid considerebistiongly on the dimensionali-
ty of the grid. In our case, for the two-dimensiosguare lattice, the percolation
threshold has been designated numerically. a€0.59274621... [2].

Not all occupied sites are in the spanning clu3teat is why we can define an-
other probabilityP'(p) saying if an occupied site belongs to the spapuinster.
Below the percolation threshold that clearly mustzero. The functio®'(p) is
particularly important when dealing with criticahgnomena for percolative sys-
tems, but we do not treat this subject in the prestidy.
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Fig. 2. The probability of appearance of spanningterP as a function of occupancy
probabilityp for various system sizésand barrier lengthB. The inset: the maxima of
curves denote the positions of the percolation geehresholdg(L)
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The main aim of this paper is to answer the gaestf how the presence of
a barrier in the finite system affects the behawbthe probability functions de-
fined above. For simplicity, the barrier, which che interpreted as a selected
group of sites for whiclp = 0, has been chosen as symmetric with respetteto t
system edges (see Fig. 1). It is worth mentionirag the preliminary results has
been presented in the reference [3].

1. Modd

At finite systems there is no longer a sharp ttamsiatp, it becomes smeared
out to some extent op aroundp.. Therefore the percolation threshold defined by
the singularity ofP(p) (or P'(p)) at p. is replaced by the percolation pseudo-
thresholdp.(L). As one increases the system size, the smeagiisgess (see in the
main body of the figure 2 & = 0). To determine the location of the percolation
pseudo-thresholgy(L) we use the inflexion point of curve (or the e@lént posi-
tion of the maximum of its first derivative). Tharse strategy for determining the
p'«(L) can be used to the'(p) probability (see Fig. 3). Although both quanstie
p(L) andp'(L) vary for finiteL, they tend to the sanpg when L—co.
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Fig. 3. The fraction of occupied sites belonginght® spanning cluster for various system
sizesL and barrier lengthB. The inset: the maxima of curves denote the postof the
percolation pseudo-threshgi(L)

The presence of a vertical barrier reduces the eumbpaths along which the
cluster may extend between the edges. The only tawwaypmpensate the lack of
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some connections is to increase the probahiitfyherefore we expect that for
a non-vanishin@d the percolation pseudo-threshold is shifted towdrigher val-
ues ofp. Our results presented in Figures 2 and 3, whexesalue ofD has been
chosen to be high enough to make significant @wdifice between the curves with
zero and nonzerD, confirm this conjecture. It is worth noticing thhis effect is
much more pronounced for tR¢p) probability. In addition, in Figure 4, curves for
different values oD at fixedL = 101 have been collected. It may be noted that for
extremely larg® shape of the functioR and its derivative, changes dramatically.
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Fig. 4. The probability of appearance of spanningterP for L = 101 at various barrier
lengthsD. The inset presents their first derivative. Itsximaa localize the percolation
pseudo-threshold at finite systems

In order to combine the results for different valwéL andD, it seems reason-
able to confront the results obtained at a constaind of D/L. Both values are
lengths characterizing the system, but one canatxpat their ratio plays the role
of an universal scaling parameter [4]. Thus, weadnie to present a common plot
for the percolation pseudo-threshold dependendberatioD/L.

The plots in Figure 5 show that the presence drady affects the location of
the both pseudo-thresholds in a different way. @aeation of the value gb(L)
for smallD/L is relatively small, but it increases dramaticallthe D/L is close to
one. The position op'(L) varies almost linearly with the change L, but is
clearly lower in the whole range BfL, compared with the previous case. It can be
assumed that in the first case a very wide bamakes practically impossible to
create a cluster - only a few sites between thadsaand the edge are crucial. That
is why so largep is necessary. In the second case, we considertbobe situa-
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tions, where the spanning cluster has already bfemed and we inspect how
large is the fraction of occupied sites belongmg.t
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Fig. 5. The lines represent the percolation psehdesholds for the square cluskei
with the symmetrically located barrier with thedit®iD parallel to one pair of edges

2. Discussion

We have confirmed the significant influence of ariea on the localization of
the percolation pseudo-threshold. Moreover, we slibthat for different ways of
determining the percolation pseudo-threshold intdisystems, the effect is di-
verse. To investigate thoroughly these behaviatthdu calculations are necessary
for larger systems.
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