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Abstract. The solvation force of a simple fluid confined betwdour identical walls is
studied with different settings of surface fiel@ur numerical results, obtained by density-
matrix renormalization techniques for a strip-légstems of widths up to 500 lattice con-
stants, provide excellent the bulk free-energyapdtation. The influence of surface fields
setting on the pseudo-coexistence line and ondhation force is presented.

I ntroduction

When simple fluids are confined between walls, theperties may differ dra-
matically from those in bulk [1]. Understanding tiifluence of confinement on
the phase behavior of the fluid is relevant for 8uid porous solids and for exper-
iments performed with nanomachines. In the latsedhere is a hope that repul-
sive solvation force acting at the nano-scale wallllnlv engineers to design novel
nanodevices [2].
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Fig. 1. Two settings of surface fields: a) onlytero opposite sides of a square,
b) on all sides of a square

When the confining walls attract the atoms of thilfithe phenomenon of ca-
pillary condensation occurs at temperatufeselow the bulk critical temperature
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T. whereby the bulk first-order phase transition @bexistence line) is displaced
in the (i, T) plane: condensation of the gas to liquid occtiess\alue of the chemi-
cal potentialy smaller than in bulk [3]. On the other hand, flarg¢diated interac-
tions between two surfaces appear, usually referess the solvation forcig,y,
that is a generalized force conjugate to the digtdretween the walls. For tem-
peratures sufficiently far away from the bulk catitemperaturd,, solvation force
fson decays exponentially, but nedk, fs, becomes long ranged as a result
of critical fluctuations, a phenomenon which is knoas the critical Casimir effect
[4, 5].

The solvation force has been investigated vennsitely recently [6], especial-
ly when the experiment with a classical binary igjmixture confirmed its exist-
ence [7]. Nevertheless, the understanding of iteawer is far from being com-
plete. One of the issues which has not been imadstil is how the properties of the
solvation force depends on more complex settingthefsurface fields then for
a strip-like geometry. That is why, in this articlee deal with the system in
a square-like geometry with various field settings.

1. Modd

Here we exploit the mapping between fluids and $imgimodel and study Ising
spin systems subject to identical surface fields T8 system we consider is an
Ising spin system in a square-like geoméitry. subject to surface fields with the
same magnitudb;. For finiteL there are no true thermodynamic singularities and
quantities such as the free energy and the magtietizdepend smoothly on tem-
perature, surface and bulk fields. Therefore, thgnatization jump on the coexist-
ence line, characteristic for the first-order phasasition, is replaced by a sharp
but continuous growth. Therefore, it is more cadritecuse the name: the pseudo-
coexistence line.

Two setting of surface fields are presented in f&du At each site, labeled;,
there is an Ising spin variable taking the valge=+1. We assume nearest-
neighbor interactions of strengthand the reduced bulk magnetic figddcorre-
sponding to the chemical potentj@. The Hamiltonian for the case with two re-
duced surface fields is:

H=-J Eca,}'; S5 — -Plz?;lse - h12f:1'|:31,:' +55:) (1)

where the first sum runs over all nearest-neighlains pf sites, while the last one
over the first and the-th column. The Hamiltonian for the case with foeduced
surface fields has the following form:
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H=-] Z 5i8; — hifis - hii(&s + 5140~ hii(si,i +51) )
=1 =1 =1

i

where last two sums cover all surface sites.
The total free energy per site may be written as:

2 Tty + FiLT.RRy)

f(LJTJthl}sz(TJh}"_ L

(3)
wherefy is the bulk free energyi, is theL-independent surface excess free-energy
contribution from each surface, amdis the finite-size contribution to the free
energy [5]. All energies are measured in units) @nd the temperature in units
of J/ks. The quantityf*, which vanishes forL - «, gives rise to the solvation
force.

o

feotw = — (E'L (4)

)I',i'z,hl
Our calculations on the square have been done bysnaf the finite-size trans-
fer matrix method [9].

2. Reaults

It is well known that the combined effect of ideali boundary fields (positive
here) and confinement shifts the phase coexistenoe the bulk coexistence line
(h=0) to a finite value df (negative here). In order to see how the bothregttof
surface fields affect this shift, we have studiegl $quare with = 11. To determine
the pseudo-coexistence line we have scanned thee ptiagram i, T) at fixed
temperature. As one can see, the presence of edidats on all walls requires the
larger (in magnitudef) to compensate positive surface fields5 0.1) compared to
the case with two surface fields.

To calculate the solvation force from Eq. (4), detieation of the bulk free en-
ergy is necessary. Therefore we have applied thsitglematrix renormalization
technique, which is doing excellent for the Isinigpslike systems. This method,
which is based on the transfer-matrix approachyiges a numerically very
efficient iterative truncation algorithm for constting the effective transfer matri-
ces for strips of fixed width and infinite length [)]. In the present paper, to ex-
trapolate the strip free energies to the bulk &eergy the systems of widths up to
L = 500 lattice constants were studied.
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Fig. 2. The pseudo-coexistence curves at the sqiard 1) with two (dot symbols) and
four surface fields (cross symbols) for= 0.1
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Fig. 3. The solvation force (in units kfT) at the square (15x15) with two surface fields
forh;=0.1

The curves presented in Figures 3 and 4 are similaature. With the increase

of |hy|, the value of the solvation force rapidly decesagpasses through a mini-
mum, and next grows softer, until it reaches aln@osbnstant value. The sign of
the solvation force is of paricular interest. Irr @ase, when it is always negative,
the force is attractive for all temperatures, wHidds to the presence of additional
pressure.
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Fig. 4. The solvation force (in units kfT) at the square (15x15) with four surface fields
forh;=0.1

It can be assumed that the shape of{heurve (in particular the position of its
minimum) is associated with the location of thexisince curve. However, we
have considered relatively small systems and thitefsize corrections are signifi-
cant, so we can hardly draw firm conclusions.

3. Discussion

We have confirmed the importance of surface fiagdttirsgs on the capillary
condensation phenomena and on the magnitude aollation force. In the case
of the four surface fields the increase of solvatiorce leads to larger values of
effective pressure, than for the case with only sudface fields. However, to min-
imize the influence of the finite-size effects, ghecomputational studies require
larger systems.
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