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Abstract. The solvation force of a simple fluid confined between four identical walls is 
studied with different settings of surface fields. Our numerical results, obtained by density-
matrix renormalization techniques for a strip-like systems of widths up to 500 lattice con-
stants, provide excellent the bulk free-energy extrapolation. The influence of surface fields 
setting on the pseudo-coexistence line and on the solvation force is presented. 

Introduction 

When simple fluids are confined between walls, their properties may differ dra-
matically from those in bulk [1]. Understanding the influence of confinement on 
the phase behavior of the fluid is relevant for fluids in porous solids and for exper-
iments performed with nanomachines. In the later case there is a hope that repul-
sive solvation force acting at the nano-scale would allow engineers to design novel 
nanodevices [2]. 

 

Fig. 1. Two settings of surface fields: a) only on two opposite sides of a square,  
b) on all sides of a square 

When the confining walls attract the atoms of the fluid, the phenomenon of ca-
pillary condensation occurs at temperatures T below the bulk critical temperature  
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Tc whereby the bulk first-order phase transition (the coexistence line) is displaced 
in the (µ, T) plane: condensation of the gas to liquid occurs at a value of the chemi-
cal potential µ smaller than in bulk [3]. On the other hand, fluid mediated interac-
tions between two surfaces appear, usually referred to as the solvation force fsolv, 
that is a generalized force conjugate to the distance between the walls. For tem-
peratures sufficiently far away from the bulk critical temperature Tc, solvation force 
fsolv decays exponentially, but near Tc, fsolv becomes long ranged as a result  
of critical fluctuations, a phenomenon which is known as the critical Casimir effect 
[4, 5]. 

The solvation force has been investigated very intensively recently [6], especial-
ly when the experiment with a classical binary liquid mixture confirmed its exist-
ence [7]. Nevertheless, the understanding of its behavior is far from being com-
plete. One of the issues which has not been investigated is how the properties of the 
solvation force depends on more complex settings of the surface fields then for 
a strip-like geometry. That is why, in this article we deal with the system in 
a square-like geometry with various field settings. 

1.  Model 

Here we exploit the mapping between fluids and the Ising model and study Ising 
spin systems subject to identical surface fields [8]. The system we consider is an 
Ising spin system in a square-like geometry L×L subject to surface fields with the 
same magnitude h1. For finite L there are no true thermodynamic singularities and 
quantities such as the free energy and the magnetization depend smoothly on tem-
perature, surface and bulk fields. Therefore, the magnetization jump on the coexist-
ence line, characteristic for the first-order phase transition, is replaced by a sharp 
but continuous growth. Therefore, it is more correct to use the name: the pseudo-
coexistence line. 

Two setting of surface fields are presented in Figure 1. At each site, labeled i, j, 
there is an Ising spin variable taking the value 1±=is . We assume nearest-
neighbor interactions of strength J and the reduced bulk magnetic field h (corre-
sponding to the chemical potential µ). The Hamiltonian for the case with two re-
duced surface fields is: 

  (1)
 

where the first sum runs over all nearest-neighbor pairs of sites, while the last one  
over the first and the L-th column. The Hamiltonian for the case with four reduced 
surface fields has the following form: 
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(2) 

where last two sums cover all surface sites. 
The total free energy per site may be written as: 

  (3) 

where fb is the bulk free energy, fw is the L-independent surface excess free-energy 
contribution from each surface, and f* is the finite-size contribution to the free  
energy [5]. All energies are measured in units of J and the temperature in units  
of J/kB. The quantity f* , which vanishes for  ∞→L , gives rise to the solvation 
force. 

  (4) 

Our calculations on the square have been done by means of the finite-size trans-
fer matrix method [9]. 

2. Results 

It is well known that the combined effect of identical boundary fields (positive 
here) and confinement shifts the phase coexistence from the bulk coexistence line 
(h = 0) to a finite value of h (negative here). In order to see how the both settings of 
surface fields affect this shift, we have studied the square with L = 11. To determine 
the pseudo-coexistence line we have scanned the phase diagram (h, T) at fixed 
temperature. As one can see, the presence of surface fields on all walls requires the 
larger (in magnitude) h to compensate positive surface fields (h1 = 0.1) compared to 
the case with two surface fields. 

To calculate the solvation force from Eq. (4), determination of the bulk free en-
ergy is necessary. Therefore we have applied the density-matrix renormalization 
technique, which is doing excellent for the Ising strip-like systems. This method, 
which is based on the transfer-matrix approach, provides a numerically very 
efficient iterative truncation algorithm for constructing the effective transfer matri-
ces for strips of fixed width and infinite length [5, 10]. In the present paper, to ex-
trapolate the strip free energies to the bulk free energy the systems of widths up to 
L = 500 lattice constants were studied. 
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Fig. 2. The pseudo-coexistence curves at the square (11×11) with two (dot symbols) and 
four surface fields (cross symbols) for h1 = 0.1 

 

Fig. 3. The solvation force (in units of kBT) at the square (15×15) with two surface fields 
for h1 = 0.1 

The curves presented in Figures 3 and 4 are similar in nature. With the increase 
of |h1|, the value of the solvation force rapidly decreases, passes through a mini-
mum, and next grows softer, until it reaches almost a constant value. The sign of 
the solvation force is of paricular interest. In our case, when it is always negative, 
the force is attractive for all temperatures, which leads to the presence of additional 
pressure. 
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Fig. 4. The solvation force (in units of kBT) at the square (15×15) with four surface fields 
for h1 = 0.1 

It can be assumed that the shape of the fsolv curve (in particular the position of its 
minimum) is associated with the location of the coexistence curve. However, we 
have considered relatively small systems and the finite-size corrections are signifi-
cant, so we can hardly draw firm conclusions. 

3. Discussion 

We have confirmed the importance of surface field settings on the capillary 
condensation phenomena and on the magnitude of the solvation force. In the case 
of the four surface fields the increase of solvation force leads to larger values of 
effective pressure, than for the case with only two surface fields. However, to min-
imize the influence of the finite-size effects, these computational studies require 
larger systems. 
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