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Abstract. The 3D parabolic equation supplemented by adecumiadary and initial con-
ditions is considered. This equation is solved gishre combined variant of the boundary
element method. The numerical model for constanintdary elements and constant
internal cells is presented. In the final part led paper the examples of computations are
shown.

1. Formulation of the problem

The three-dimensional Fourier-Kirchhoff type egomatis considered

OT(x t)_ 4 2T(x B uOT(x,t)+ Q(x, t) )
ot ax c

XD :

whereT is the temperature, = A/c is the thermal diffusivityX is the thermal con-
ductivity andc is the volumetric specific heat, respectively)s the constant ve-
locity, t denotes timex ={x;, x,, X3} and

OT(x t), 0°T(x1) 9T (x1)

2 2 2 (2)
0X 0X, 0 X3

07 T(x, t)=

The equation (1) is supplemented by the boundangitons
X, @ T(xt)= T,
3
XM, q(xt)=- xg—T: a[T(x t)y T,] )
n
and the initial one

t=0: T(x,0) =T, (4)
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where Ty, is the known boundary temperatuie, and T, are the heat transfer
coefficient and the ambient temperature, respdgfivig is the initial temperature,
dT/onis the normal derivative

aT _ oT aT aT c
—— = ——cosq, +——C0Sa, +—— COS, (5)
on  dx d X, 0 X,

where coaq;, cosi,, co%i; are the directional cosines of the normal outward
vectorn [1, 2].
2. Boundary element method

The equation (1) can be written in the form

10T (xt) _ 02 T (x, ) uodT(xt) QKt) (6)
a ot a 0x A

To solve the equation (6), the BEM using discreiirain time is applied. At first,
the following approximation with respect to timei®posed

1T(xt)-T(x,t™) _ PTxt)- Y oT(x,t'), Q') 7)

a At a 0x A
this means
f
PTt)- —— Tty 22T,
f-1
1 T(X,tf_l) + Q(X,t ) = O
aAt A

The weighted residual criterion for equation (Spisnulated [1, 3]

2 fy_ i fy_
i[m T(x t") aAtT(x,t ) o
E aT(X, tf) + 1 T(X,tf_l) + Q(X,tf_l)

a 0x aiAt A

}T*(é,x)dQ =0

whereg is the observation point and (&, X) is the fundamental solution.
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Using the second Green formula [1, 4] one has

- . AT (x, t'
jD (& X) T(x, t")@ + !{T(&,x)%—

o OT(8%) |4 - L T _
T(x,t) o dr aAtlT(x,t )T (& x)dQ (10)

upoT(x, t") . 1 foin
gi—a)& T(g,x)d9+mlT(x,t ) T" (& x) dQ +

%j Qxt™ T (g, x)da = 0

or

HDZT (& x)- % T (&, x)} Txt) @ - %jT*(g, x) q(x,t") &+

a r

%I q (& x)T(x,th)yd + %J‘%th) Tt -

(11)

Q

' f 1 f-1y o+
%!T (& x) T(x,t") cosa, dr + i lT(x,t )T (& x)dQ +

%l Qxt™) T (g,x)dQ = 0

whereq(x, t")=-1 dT(x,t")/dn andq (&, x)=-1 dT (&, x)/an.
Finally
2T (e ) LT uoT (xth) N -
i[DT(ﬁ-X) AT T (& %)+ 2 ox Tt

ij (& x) (xt)dr+_jq X)T(xt")d -

r

(12)

u * _
—|T (& x)T(x,t")cosa, dr + —— [T(x, t"™) T (&, x) dQ +
2] T (6 X Tt cosa, ami( )T (&%)
ij Qx,t'™) T (& x)dQ = 0
7\‘0
Fundamental solution should fulfill the followingwation

07T (&, X) - iT*(é,x% %%DS(M) (13)
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whered(&, X) is the Dirac function.
Taking into account the property (13) the equatii) takes a form

T t') + %jT*(g, x) q(x, t")dr = %j q (& x)T(x t")dr -
%jT* (€, x)T(x,t") cosa, dr + ﬁ J‘T*(F,, X)T(x, t"™)dQ + (14)
%j T (& %) Q(x, t'*)dQ

For ¢ the boundary integral equation is obtained
f 1 * f _ 1 * f
B(&) T t') + -] T (& x)amt)dr = =] (& )T t")dr -
r r
u N f 1 * [ (15)
—|T (& X)T(x, t ar + — | T (&, x)T(x,t'™)dQ
ajr' (& X) T(xt") cosa,dr + = i (& X)T(x t"*)da +

%i T (& x) Q(x, t"™*)dQ

where B(£)0(0, 1) is the coefficient connected with the location pafint &

on the boundary .
For the problem considered the fundamental solusidhe following [5]

RN S D N (1T A S Y 16
T(é’x) 4nr exp{ \/[ZajJraAtr 2a % ~&) (16)

wherer is the distance between the poiats (&1, &, &) andXx = (Xq, X2, X3).
Using formula (16) the heat flux (€, X) resulting from fundamental solution can
be calculated.

3. Numerical realization

To solve equation (15) the boundary is divided iNtboundary elements and
the interior is divided intd internals cells. Next, the integrals appearinflLi) are
substituted by the sums of integrals [4].
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So, for optional boundary poirﬁ (' one has

B(¢) T, t)+—ZI (& x)a(x, t"ydr, =

Jlr

%EN: q (g, \)T(x t")d - ZI (&' x) T(x,t") cosu,dr (17)

i=1r, aj= =1r;

[EEN

p i T (g )Tt ) d, + _ij T (¢, %) Qi ') g

:]'QI

>

When the constant boundary elements and consttarthah cells are used then
the equation (17) takes form

FTE O IX [T (e or

%ZN:T]f g (g, x)dr, - Eleij T' (€, x) cosa, dr + (18)
j=1 I a'j:1 r
1 ¢ f-1 “f i 1g -1
— N1 Q + =
O j (& x)da, + 230 j (g x) do
or
N N L L
YGal =Y (H, U )T +XRT M+ Z,Q i=12... N (19)
j=1 j=1 =1 =1
where
1 [} i
G, ==[T (¢, x)dr, =
r:
1 ;1 u) 1 .
Py J—exp[— \/ (Z_aj + YRR —- & —&)
Hy, i#]
H = (21)
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i Of ¢i ’ 1
Hi; :%Iq (g,x)dl’j:i'fr—lex{— (Ziaj +ﬁ i _Zia Q(i_al)]

ry i

2
(L Rl T s R POV
2a alAt N 2a (22)

2
i + 1 Xz_éz + Xz_éz cosu, +
2a aAt r, r 2

] ]

2
{ (ij ML S )(3_25"3]cos<13}drJ
2a) aAt 1, r.

ij ij

Ui :g TD(Q‘, x)cosmldrj =
r
' (23)
2
u 1 u 1 u
—exp - — — - — (x - dr.
4na rJexp[ \/ [Zaj T ant 2a % il)] oMl
P :ijT*(ai,x) dQ, =
il aAt 3 |
> (24)
1 1 u 1 u
Zexp = | || + —— 1, - = (x-&)|d
dmadt g, ¢ p{ \/ [Zaj T ant " 2a & E"l)] 4
1 ol
Z, == | T (&, x)dQ, =
Ty J (E_» X) |
(25)

1 1 u) . 1 u
Y Ir—eXp[‘ \/ (Z_aj oA T o & ‘51)} dQ

Q

The system of equations (19) allows one to detesrtiie “missing” boundary
values T; and ¢. Next, the temperatures at the internal poirgs
i=N+1,N+ 2, ...N+L can be calculated using the formula
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Tf

N N L L
2 (H =0T =26 0] + X RT 4> Z,Q' (26)
j=1 j=1 =1 =1
After determining the integral&;, H;, U;, Py, Z, and taking into account the
boundary conditions (3), the system of equatior®y ¢an be solved by means of
the Gaussian elimination method [4].

4. Results of computations

The following input data are introduced: thermahduoctivity A = 10 W/(mK),
volumetric specific heat = 1¢ J/(n?K), velocity u = 0.0001 m/s, source func-
tion Q = 0 W/n, initial temperaturd, = 0°C and the time stefst =5 s,

The cuboid of dimensiorls x |, x I3 = 0.05x 0.05x 0.025 i is considered.
It's assumed than; = n, = 10,n; = 5, soN = 400 boundary elements have been
distinguished.
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Fig. 1. Temperature distribution for times 10 afdsBcond - 1 example (plareg= 0.0225 m)
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Fig. 2. Temperature distribution for times 30 af@ $econd - 2 example (plare= 0.0225 m)
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In the example 1 at the left and right surfacesudfoid the temperatures &D
and 100C, respectively have been assumed, on the rematngdaries the no-
heat flux condition has been accepted. In Figutkeltemperature distribution in
the planex, = 0.0225 m is shown. In the example 2 at the righface the Robin
condition has been assumed= 50 W/(nfK), T, = 2C°C). Results of computations
are shown in Figure 2.

The boundary conditions are assumed in the formrggsthe possibility of so-
lution verification (the 3D problem becomes praaiticthe 1D one). The analytical
solution concerning the steady state is very siraplkit can be compared with the
numerical one at time for which the stabilizatidntemperature field takes place.
Additionally the paralell position and linear shagesotherms should be observed.
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