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Abstract. Two types of one-term nonlinear fractional diffetial equations are considered
and the existence of solutions in the space of timoous, positive and bounded below
functions is proved. We transform an equation @omtg the left- or right-sided Caputo
derivative into a fixed point condition and apfiye Banach theorem and extended Bielec-
ki method of equivalent norms.

Introduction

Fractional calculus involves derivatives and indéégrof non-integer order in
addition to the classical ones of integer-ordent@oy to the traditional name, the
order of operators can be a fraction, an arbitragl or complex number. Such
operators are now an integral part of mathematiwadielling methods in many
areas of mechanics, physics, control theory, bimemging, economics and chem-
istry (see monographs [1-8] and the referenceitmer In the applications of frac-
tional calculus, a new class of integral-differahttquations has been developed.
They include integrals and derivatives of non-ietegrder and in general the high-
er order equations contain compositions of fractiaterivatives. Solutions have
been studied for two decades [6-16] and the metbbdslving include fixed point
theorems, integral transform methods as well agatp@al methods based on
properties of new classes of special functions.sWal study here one-term frac-
tional differential equations (FDE) which means tliiéerential part includes only
one fractional derivative which in the considerege is a Caputo left- or right-
sided one. In the paper we apply the Bielecki nmethb equivalent norms [17]
(compare also [18, 19]) as a main tool of provihg éxistence-uniqueness of the
solutions and extend it to the FDE with a rightesicoperator.

The paper is organized as follows. In the nextiseaie recall the definitions
and some properties of fractional operators. We misoduce the family of func-
tion spaces of continuous and bounded below funstidetermined in an arbitrary
finite interval. On these spaces two types of noanesconstructed following Bie-
lecki’s ideas [17]. They depend on a scaling pasiparameter and on a non-
negative continuous function. Being equivalenthe standard supremum norm,
they yield the same convergent sequences and the Baits. In Section 2 we
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consider two types of nonlinear integral equatiogsntaining the left-sided inte-

gral (as is standard in the Volterra equationsf)eor the right-sided one. Using
the norms introduced in Section 1 and the inducettios we prove the existence
and uniqueness of the solutions for both typejaatons. The main results of the
paper are included in Section 3, where we transfoenain nonlinear FDE into

equivalent integral ones. Next, we apply the resaftSection 2 to construct the
solutions generated by the respective stationargtions of Caputo derivatives.

1. Preliminaries

We recall here some of the operators of fractioakulus. We start with inte-
grals defined for functions determined on finiteeiwal [8, 20].

Definition 1.1

Riemann-Liouville integrals of ordes, denoted asl g, f (t), I, f(t), are given
by the formulas below forRe(@) > 0:

g e 1 ¢ f(u)du
IO+f<t>—r(a)£(t_u)l_a >0 (1)
g e 1 % f(udu
Ib-f(t>—r(a)!(u_t)l_,, <b 2)

The first of the above integrals is called the-gifted Riemann-Liouville inte-
gral and the next, the right-sided integral respelt Having defined fractional
integrals, we can construct fractional derivativiesour paper we shall consider
one-term fractional differential equations with Qapderivatives given in the fol-
lowing definition.

Definition 1.2
Caputo derivatives of order, denoted as°Dg, and °Dy_ for Re@)O(n-1n),
look as follows:

t

cna _ 1 f(n)(U)
DS (1) = r(n_a)l(t e 170 3)

n b n
cDg_f(t): (_l) f()(u)

r(n-a)y (u-t)* ™™

t<b (4)

Similar to the integrals defined in (1), (2) we bahe left-sided derivative (3)
and the right-sided derivative (4).
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An extensive review of the properties and applaregiof the presented operators
can be found in monographs [6-8, 20]. We only gqudthe composition rules for
integrals and derivatives. We shall apply themthierr in the transformation of the
fractional differential equations discussed in paper.

Property 1.3

The following composition rules hold for any[I[0, b] :
Dyl g, f(t)=1(t) (5)
°DILIZ ()= f(t), (6)

provided functiorf is continuous i.ef OC[0,b].
Our aim is to study nonlinear FDE on a finiteeivial in the form of

“DEX(t) = A ()" (7)

"DEX(1) = A X(1)" (8)
and to find their positive solutions belonging te tfunction space given in the
definition below.

Definition 1.4
Function spaceCrTb,g[O, b] is a subspace of the space of continuous functiens
termined by the condition

Cry o[0 b] ={xUC[O,b]; x(t)2myg(t)>0 OtO[O,b]}.

Let us note that the above space, endowed withtacneduced by the supremum
norm, is a metric and complete space.

The nonlinear terms on the right-hand side of aqnat(7), (8) fulfill the following
Lipschitz-type condition.

Lemma 1.5
Let x,yUC,, 4[0,b] be a pair of arbitrary functions. Then the foling/inequali-

ty is valid for anyt (1[0, b]
()" -y

< LE)[x(t) - y()| 9)

where function coefficient. looks as follows
1

RN

(10)

for rD(%,%) or -r D(%,%) in the case of negativewhere |,nJN.
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Proof: we observe that for anyd (0) a pair of integer numbers exists such that

nt<r<|™ I,nON (11)

Let us assume that(t) = y(t) for given t[0,b] . We shall prove inequality (9)
in this case only as all the calculations are ag@ls whenx(t) < y(t).  Starting
from the left-hand side of (9) we obtain

r 1/1
morhk—{§%J‘skaf‘%.[§g£

mw—wﬂ=

y(t)
(D\WYl IX() - y(b)
S y(t)J [Y(t)j < y(t)k/l X(t)(l -rl-k)/1 ’

where we applied the formula for partial sums ef ggometric series. As functions
x andy belong to theC,, ,[0O,b] space, we arrive at inequality (9):

|x(t) = y()| |mrwm

SONRNORES Z‘y(t)kllux(t)(l 01| (mog(t))l_r |

Now, we consider the case when exponeris negative. Similar to the first part of
our calculations we assumg(t) = y(t), r 0 (~210) and r fulfills the condition

nt<-r<I? |,nON.
Then we get
' - hw m|_ oo
N [y(t)Jl/l
(EJ - XO) | yo|_
X(t) x|

B0
X(t)
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oy
(t)

|x(t) = y(b)| |
Izll X(t)(l —k)/1 y(t)(k—rl)/l

k=0

=

yo)”

X(t)
Remembering thatx(t) = myg(t), y(t)=myg(t) we arrive at inequality (9) in the
case of negative

k=0

IX(t) = y(t) < IX(t) - y(t)|
N X(1)179 ()< I(myg (@)

k=0

‘x(t)r -

In his papers Bielecki introduced for Volterra gtal equations a family of
norms equivalent to the supremum norm. Changingntiren of the considered
function space, we are able to rewrite the Voltertegral equation as a fixed point
condition of certain contractive mapping. Follogithis method, we construct on
the space of positive continuous and bounded bélmetions, two families of
norms determined by a scaling parameter and a nagative function connected
to the problem.

Definition 1.6
We introduce two new norms on function spacg, 4[0, b]

[A],... = suph(t)e® (12)
00,b]

X, - = sup|x(t)e™ ", (13)
T o,b]

where G is an arbitrary continuous, non-negative functmilx is a positive real
number.

It is easy to check that both norms (12), (13)eapeivalent to the supremum norm
on theC, ,[0,b] space.

Property 1.7

Norms ||[n]K’_and ||[|p,(,+ are equivalent to the supremum norm for alyR, and

function G obeying the conditions of Definition 1.6.
Proof: the equivalence is a result of the following inalifies

I oint &0 <[, <

KG(1)
[M=I... < Csupe

valid for any function xUC,, ,[0,b].
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2. Bidlecki method for left- and right-sided integral equation
on the C, ,[0,b] space

In this section we shall consider two integral eiunes

X() = [ K 9)X(9)" ds+ o (1) (14)
0

b
X() = [K(t9)X(9)" s+, (1), (15)

where|r|<1, kernel K is a non-negative, continuous function determioadset
[0,b] [0, b] and function ¢, LC,,, ,[0,b] . The first of the above equations was

also discussed in [21] on the space of functiomgicoous and bounded.
We shall prove the existence and uniqueness cfdhtion to the above equations

in the C,, ,[0,b] space. To this aim we apply the Banach theorena dixed

point, reformulating the integral equations as dixy@int conditions for the map-
pings defined below

TX(t) = j K (t, S)X(s)" ds+ @, (t) (16)

b
TX(t) = j K (t, S)X(s)" ds+ @y (t) (17)

Let us note that T:C,, ,[0,b] -~ C,, ;[0.b] and T:C, ,[0.b] - C, ,[0,b].
Both mappings are contractions on tr@nb,g[o, b] space endowed with metrics
induced by normgff], _ and|[fl , respectively, when k0(01). This result is
proved in the lemma below and in Lemma 2.3.

LemmaZ2.1l
Mapping T, defined in formula (16) with kernél a continuous and non-negative

function on set [0,b] x[0,b], is contractive on the Q, ,[0,b], [l ) space
when «0(01), ¢,0C,, ,[0b] and

G(t) = j K (u)L(u)du (18)

1
K = K{t, L = .
(W)= Sop K O g
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Proof: Let X, yUC,, 4[0,b] be a pair of arbitrary continuous functions bouhde
below by positive functionm,g. The distance between their images, measured
using the metric induced by norm (12) wihgiven in (18), fulfills the following
inequalities

t t
[t =Ty], - = supe™®|[ Kt 9)x(9)" ds - [ K (t,9)y(s)' ds{ <
t[0,b] % %

< sup e‘KG(‘)j“K(t,s)(x(s)r -y(s)" lds <

t[o,b]

< supe™e0 j K(9)L(S)x() - Y(9)|ds =

t[0,0]

t
= sup e‘”G(t)I K(s)L(s)|x(s) - y(s)le™*PeIds <
t]0,b] 0

1
<—x-y
K

t
. EBupe‘”G‘t)ij(s)L(s)e"G‘S)ds =
=7 o] 5

1 _ 1
=[xy, Csupe (e 0 ~1)<—|x~y], _.

t[0,b]

Thus, we conclude that mappifigobeys the following condition for any pair of
functions x, ytIC,,, [0, b]

x =Ty, <o, (19

K

and for any positive value of parameteAssumingx ™[ (01), we note that this
mapping is a contraction on th€{ .[0,b], [l ) space.

Corollary 2.2
Equation

X(®) = [K(L9X(S)" ds+ g, (1),
0

Where|r| <1 and kernelK is a non-negative, continuous function deterhiop
set[0, b] x[0, b], has a unique solution in ti&, [0,b] space, provided function
&, DC%,Q[O, b].
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Lemma?2.3

Mapping T, defined by formula (17) with kern&l a non-negative, continuous
function on sef0, b] x[0,b], is contractive on theQ,, ,[0,b], ||l ,) space when

k0 (01) and@, OC,, ,[0,b].
Proof: Let X, yDCmOYg[O, b] be a pair of arbitrary continuous functions bouhde

below by positive functiorm,g . Now the distance between their images and

Ty is measured using the metric induced by norm i) function G given in
(18). It obeys the relations

< sup e j ‘K(t 9(x(9)" - y(s) } s < sup e j K (s)L(s)|x(s) - y(s)|ds =

t[0,b]

t0[o,b]

= sup ect I K (t, s)x(s)"ds - T K (t, s)y(s)rdS{ <

b
= sup e"G(”I K(s)L(s)|x(s) = y(9)|e"*Ve™*Pds <
t

t0[0,b]

b
< %”x =, . sup e"G“)IKK (s)L(s)e*Cds =
tofo,b] f

b
- KG(t)| —xG(t) _ _"J(;K(U)L(u)du B
B "X y||;c+ S[l(')jbp]e e e -
b
-k [K )Ly
_—||X M., supli-e <2 [x- ..

The above calculations imply the following ineqtalvalid for any functions
X, yDCWb'g[O, b] andxOR,

We now assumex " [J (01) and conclude that mappiﬁTg is a contraction in the
(Crry [0, 11, [, ,) space.

1
e STV (20)
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Corollary 2.4
Equation

b
X(1) = [K(L9X(9)" ds+ o (1),

Where|r|<1, kernel K is a non-negative, continuous function determioadset
[0,b] x[0,b], has a unique solution in theC,, ,[0,b] space, provided function

#,0C,, 4[0.b].

Let us note that the proofs of Lemma 2.1 and 2@yrthat assumption on the
continuity of kerneldK can be replaced by the assumption that they segreble
and bounded functions. We give this generalizedltrés the following lemma

describing the case of mappifigndT .

Lemma 2.5
(1) MappingT, defined in formula (16) with kerndd a non-negative function,
integrable with respect to its second argument tandhded on se{0, b] x[0,b],

is contractive on the G, ,[0,b], [, . ) space whe ™0 (01), ¢, 0C,, 4[0.b]
andG s given in (18).

(2) Mapping T, defined in formula (17) with kern& a non-negative function,
integrable with respect to its second argumenttamohded on sq0, b] X[0, b], is

contractive on the @, ,[0,b], [f ,) space when ™0 (01), ¢, 0C,, 4[0,b]
andG is given in (18).

3. Main results

We apply the existence and uniqueness results ghiovhie previous section for
integral equations (14), (15) to investigate théstexice of solution to fractional
differential equations (7), (8). The first stepthe transformation of these equa-
tions to the corresponding fixed point conditioRsom the composition rules in
Property 1.3, it follows that on th€,, ,[0,b] space equations (7), (8) are respec-

tively equivalent to the fractional integral eqoas given below
X)) =A0 X" +¢,(1) (21)
x©) =205 xO)" +¢,(), (22)

where functionsg, are stationary functions of the respective Caplgovatives
taken from the C,, ,[0,b] space. Applying Definition 1.1 of the left- aright
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-sided fractional integrals we conclude that theva equations are identical to
earlier considered equations (14), (15), wherekérael is given by formula

L(t -g)™t s<t
K(t,s)=<:T(a) (23)

0 s>t
for equation (21)(t,s) [0, b] x[0, b] and respectively as

0 s<t

Kt.9)= L(s—t)""l s>t
r(a)

(24)

for equation (22),(t,s)[0, b] x[0,b] . Let us note that they are non-negative,
continuous functions on s€0, b] x[0,b] whenag>1 andA=0.

Proposition 3.1

If a>1, A=0 and r O (-11), then each stationary functiom, of the left-sided
Caputo derivative, fuffilling the conditions:Dg, @, (t) =0and ¢,0C, ,[0,b],
generates a uniqué,, ,[0,b] solution of fractional differential equation

DI x(t) = A IX(t)" .

This solution is a limit of iterations of mappifigdefined below defined below on
the C,, 4[0,b] space:

Ty(t):=A0g y®)" +4,(1) yOCpy [0, 0]

X= Iimkaoo(T)kw ’

wherey@ JC, ([0, b] arbitrary.

Proof: as we have observed, the above fractional diffil equation on space
Ci, [0, b] is equivalent to equation (14) with the kernedatéed in (23). In ad-
dition each stationary functiog, LIC,, ,[0,b] creates mapping given in (16).
Thus, the assumptions of Lemma 2.1 and Corolla2ya2e fulfilled for each sta-
tionary function of the Caputo derivative from ti&, ,[0,b] space. Applying
Corollary 2.2, we conclude that the considered FaE a unique solution in this
space generated kg, . According to the Banach theorem it is a linfithe itera-
tions of mapping (16) with kernel (23).
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In the case of equation (15) we have an analogesidtrwhich is given below. As
it is a straightforward corollary of Lemma 2.3 addrollary 2.4 we omit the proof.

Proposition 3.2
If @>1, A>0 andr O (=11), then each stationary functiog, of the right-sided

Caputo derivative, fuffilling the conditions:D, ¢, (t) =0and ¢, 0C,, ,[0,b],
generates a uniqué,, ,[0,b] solution of fractional differential equation

DI x(t) = A IX(t)" .

This solution is a limit of iterations of mappifigdefined below on th€,, [0, b]
space:

Ty() = A0 Y1) +4,() yOC,, 4[0.0]

X=|imk—>oo (-T)k[// y

wherey¢ JC,, ([0, b] arbitrary.

Final remarks

In the paper we studied two types of nonlinear-teme FDE in an arbitrary fi-
nite interval. We derived their solutions in thesg of functions continuous, posi-

tive and bounded below by given function,g . To this aim we applied the ex-

tended version of the Bielecki method and expliaitbnstructed solutions generat-
ed by the stationary functions of the left- andhtigided Caputo derivative.

Let us note that the scaling of norms using erptial functions, as in formu-
las (12), (13), restricts our results to equatioinactional ordera >1. In further
investigations we shall consider the c&s@<1 using scaling via the Mittag-
-Leffler function which is a generalization of tagponential function.
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