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Abstract. Modeling of coolant flow is increasingly importaimt the problems of heat
treatment. Variation of the coolant characteristicaot possible to present, as a boundary
condition at the appropriate level of detail. Thaper presents a solution of the heat trans-
fer equation with a convective term and a Naviek8s equation for forced flow, which is
characteristic for a hardening process. These misasire solved by means of a meshless
method. The emerging models for solving thermakesses in coolants require a stable
numerical method. In this paper a stabilizatiorihef numerical models for the generalized
finite difference method for both temperature ahddfflow models are proposed. The
results obtained with software implementationshef proposed models are compared with
the an analytical solution and with the numericadhmarks.

I ntroduction

Modeling of cooling for a humber of technologicabpesses (heat treatment)
requires the consideration of forced motion ofdbelant. Modeling of a fluid flow
is associated with the solution of differential atjons of heat transport with
convective term and the Navier-Stokes equations. ddiution of these equations
presents a number of numerical problems. One isn$tability of the algorithms
associated with high velocity and largeeclet numbers. In this paper the
numerical model, which does not require reguladgyrbased on a generalized fi-
nite element method with stabilization is presenied].

1. Mathematical modé

Considered region consists of two areas - a steelemt and a liquid coolant.
It usually assumed that the influence of the cdolan a steel element is
modeled by adequate boundary conditions. Fluid onotin the coolant
caused by external forced is taken into accourguidi movement caused by
a vertical gradient of the temperature is neglectédth such high rates
of forced, the convective motions caused by theairthpof temperature are
negligible.
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The mathematical model consists of the heat trahggmation with a convec-
tive term, the Navier-Stokes equation and the oaiti one [3-6].
Heat transfer equation in following form is assumed

(AT.,)a=RCT, —pCV,T,, =0, )

whereT [K] is the temperaturg, [s] is the time) [W/mK] is the thermal conduc-
tivity, p [kg/m? is the densityC [J/kgK] is the specific hea¥/ [m/s] is the veloci-
ty, andq, [J/nTs] is the volumetric heat source.

The Navier-Stokes equation is defined as follows

H 1
_Va’ ’ -V Va’ T p’a_va (2)
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and the continuity equation takes the form
V,,,=0 (3)

whereV, [m/s] is the velocity component in thedirection, u [kg/ms] is the dy-
namic viscosityp [kg/m¢] is the pressure.

Equations (1) are (2) are supplemented by apprtepo@undary and initial con-
ditions.

2. Numerical modd

The temperature in nodes was determined by thdi@olof the heat transfer
equation with a convective term based on a geredilfinite difference scheme
GFDM in a nonlinear implicit time scheme writtentive matrix form as

AmI[T =Dw (4)

where matrixXAm is defined as
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and vectoDw is written as
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wherez are the coefficients of approximation of derivaivfor GDFM [3].

The Navier-Stokes equation (2) is solved only negion filled with coolant by
means of a characteristic based split (CBS) sch@éime.CBS scheme is based on
the projection method was developed by Chorin [if described by Zienkiewicz
and Codina [7]. In this method an auxiliary velgdield V* is introduced [3, 7] to
uncouple equations (2) and (3)

o

Vo= At(ﬁv A ﬁj VAR (7)
p

The momentum equation was solved by GDFM usinghaplicit time scheme
for i-th node of the grid. This solution in the matrix foisnwritten as

Am, [V, =Dw, (8)

where matrixAm,, is described as

Ay, =1+ At[%zn: (zjxx + sz)]

= 9)
Ay = (2 + 2 2
p
and vectoDw, is written as
Dw? = (V1) -atfv,?) (10)
The pressure field is obtained by solving the fwifgy Poisson equation
P =0 Ve 1)
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The above equation féith node in GDFM convention takes thr followingrfor

Z”:((ijx + Ziyy)pj)_ piZn‘,(Z?x + ijy)z

j=1 j=1
(12)
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The final velocity field is corrected by the pressincrement
. 4t
AV, = —7(p,a) (13)

The solution of equation (11) in GDFM foth node is as follows

Cooat((e ., n
AV, :—;[[Z Z9p; —>.2p, D (14)

=1 =

3. Stabilization method

Numerical modeling of the phenomena with high raes causing problems
with the stabilization of solutions. In the papthe stabilization of the differential
method using a combination of derivatives (deteedion several nodal grids of
nodes) was proposed.
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Fig. 1. Examples of grid nodes used for the catmria
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The modification of the coefficients in the stahbiliion of GFDM is described by
the following equation

L 2]
|tant(Pe /2 Pe

o

z,=(-¢,)2 +¢,2, j=1.V,

/2 (15)

wherePe is a localPeclet number defined as follows: in the heat transfedeho
Pe, = v,rpC/1, in ithe flow model Pe,= pv,r./u, r, is a characteristic size of the
element of grid in the direction.

4. Evaluations of models

The differential equation of heat transport usingeaeralized finite difference
method in the control ared was solved. The rectangular geometry of dimensions
1x1 m, the initial and boundary conditions weregdd in such a way, that numer-
ical calculations results of the approximate soluttan be compared to an existing
analytical solution.

As an initial condition we assumed, that the erdirea B(X,) = 300 K and the
boundary conditions were follows:
on the left boundaryl(, x = 0) the Dirichlet conditiofip(x = 0) = 1000 K
on the other edge the Neumann conditien0 W/n?

For this case, the analytical solution is of thiéofeing form [7]

- ut ux X+ ut
T(xt)==(T° -T,) erfc uj +exp{—jerfc(—j +T, 16
0= { sl o)) o oo
whereT [K] is the temperaturd,[s] is the timeD = A/(pC).
The obtained results are shown in Figure 2.
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Fig. 2. Comparison of numerical model with the stiehl solutionu=1 m/st=0.5s,
2=0.5 W/mK,p= 1 kg/n?, C = 1000 J/kgK



128 A. Kulawik

Numerical model of coolant flow was verified usitig numerical benchmarks
involving a forced flow in a closed area with a rable top wall - Driven Cavity
Test (Ghia et al.) [8]. The conditions of the tesre as follows: area dimension
d = 1 m, densityp = 1 kg/nt, dynamic viscosity: [kg/ms] is depending on the
Reynolds number.
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Fig. 3. Comparison of calculation results with thenerical benchmark, Re = 100,
a) 50x50 nodes, b) 100x100 nodes, c) 150x150 nodes
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Fig. 4. Comparison of calculation results with thenerical benchmark, Re = 400,
a) 50x50 nodes, b) 100x100 nodes, c) 150x150 nodes

Conclusions
The generalized finite difference method can beassfully applied to prob-

lems with irregular grids. GFDM is effective in theodeling processes for com-
plex geometries. Stabilization of this method alosne to model the flow with
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large values of forced coolant velocity. The oladiresults from the numerical
model with stabilization suggest some "smoothinigthe results, but it is accepta-
ble. Without the presented stabilization, this ntioa model does not lead to ac-
curate results for largBeclet numbers. This model may be used to estimate the
temperature field during a cooling process for bandg steel tools.
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