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Abstract. Modeling of coolant flow is increasingly important in the problems of heat 
treatment. Variation of the coolant characteristics is not possible to present, as a boundary 
condition at the appropriate level of detail. This paper presents a solution of the heat trans-
fer equation with a convective term and a Navier-Stokes equation for forced flow, which is 
characteristic for a hardening process. These equations are solved by means of a meshless 
method. The emerging models for solving thermal processes in coolants require a stable 
numerical method. In this paper a stabilization of the numerical models for the generalized 
finite difference method for both temperature and fluid flow models are proposed. The 
results obtained with software implementations of the proposed models are compared with 
the an analytical solution and with the numerical benchmarks.  

Introduction 

Modeling of cooling for a number of technological processes (heat treatment) 
requires the consideration of forced motion of the coolant. Modeling of a fluid flow  
is associated with the solution of differential equations of heat transport with  
convective term and the Navier-Stokes equations. The solution of these equations 
presents a number of numerical problems. One is the instability of the algorithms  
associated with high velocity and large Peclet numbers. In this paper the  
numerical model, which does not require regular grids, based on a generalized fi-
nite element method with stabilization is presented [1-3]. 

1. Mathematical model 

Considered region consists of two areas - a steel element and a liquid coolant.  
It usually assumed that the influence of the coolant on a steel element is  
modeled by adequate boundary conditions. Fluid motion in the coolant  
caused by external forced is taken into account. Liquid movement caused by  
a vertical gradient of the temperature is neglected. With such high rates 
of forced, the convective motions caused by the impact of temperature are  
negligible. 
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The mathematical model consists of the heat transport equation with a convec-
tive term, the Navier-Stokes equation and the continuity one [3-6]. 
Heat transfer equation in following form is assumed  

 ( ) vt qTCVCTT =−− αααα ρρλ ,,,,  (1) 

where T [K] is the temperature, t [s] is the time, λ [W/mK] is the thermal conduc-
tivity, ρ [kg/m3] is the density, C [J/kgK] is the specific heat, V [m/s] is the veloci-
ty, and qv [J/m3s]  is the volumetric heat source. 
The Navier-Stokes equation is defined as follows 

 
ααβαββα ρρ

µ
VpVVV l
�=−−








,

1
,,,  (2) 

and the continuity equation takes the form 

 0, =ααV  (3) 

where Vα [m/s] is the velocity component in the α-direction,  � [kg/ms] is the dy-
namic viscosity, p [kg/ms2] is the pressure. 

Equations (1) are (2) are supplemented by appropriate boundary and initial con-
ditions. 

2. Numerical model 

The temperature in nodes was determined by the solution of the heat transfer 
equation with a convective term based on a generalized finite difference scheme 
GFDM in a nonlinear implicit time scheme written in the matrix form as 

 DwTAm =⋅  (4) 

where matrix Am is defined as 
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and vector Dw is written as 
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where z are the coefficients of approximation of derivatives for GDFM [3]. 
The Navier-Stokes equation (2) is solved only in a region filled with coolant by 

means of a characteristic based split (CBS) scheme. The CBS scheme is based on 
the projection method was developed by Chorin [7] and described by Zienkiewicz 
and Codina [7]. In this method an auxiliary velocity field V* is introduced [3, 7] to 
uncouple equations (2) and (3) 
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The momentum equation was solved by GDFM using an implicit time scheme 
for i-th node of the grid. This solution in the matrix form is written as 

 ααα DwVAm =⋅ *  (8) 

where matrix Amα is described as 
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and vector Dwα is written as 

 ( ) ( )11 −− ∆−= s
xi

s
i VtVDw α
α  (10) 

The pressure field is obtained by solving the following Poisson equation 

 αααα
ρ

,, *V
t

p
∆

=  (11) 
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The above equation for i-th node in GDFM convention takes thr following form 
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The final velocity field is corrected by the pressure increment  

 ( )αα p
ρ

t
V ,* ∆∆ −=  (13) 

The solution of equation (11) in GDFM for i-th node is as follows 
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3. Stabilization method 

Numerical modeling of the phenomena with high rates are causing problems 
with the stabilization of solutions. In the paper, the stabilization of the differential 
method using a combination of derivatives (determined on several nodal grids of 
nodes) was proposed. 

 

 
Fig. 1. Examples of grid nodes used for the calculation 
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The modification of the coefficients in the stabilization of GFDM is described by 
the following equation  

 ( ) ( ) 2/
2

2/tanh

1
II..V,,1
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j
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where Pe is a local Peclet number defined as follows: in the heat transfer model - 
Peα = vαrαρC/λ, in ithe flow model - Peα= ρvαrα/�, rα is a characteristic size of the 
element of grid in the α direction. 

4. Evaluations of models 

The differential equation of heat transport using a generalized finite difference 
method in the control area Ω was solved. The rectangular geometry of dimensions 
1×1 m, the initial and boundary conditions were adopted in such a way, that numer-
ical calculations results of the approximate solution can be compared to an existing 
analytical solution. 

As an initial condition we assumed, that the entire area T0(xα) = 300 K and the 
boundary conditions were follows: 
on the left boundary (Γ, x = 0) the Dirichlet condition TD(x = 0) = 1000 K 
on the other edge the Neumann condition q = 0 W/m2 
For this case, the analytical solution is of the following form [7] 
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where T [K] is the temperature, t [s] is the time, D = λ/(ρC). 
The obtained results are shown in Figure 2. 
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Fig. 2. Comparison of numerical model with the analytical solution, u = 1 m/s, t = 0.5 s, 

 λ = 0.5 W/mK, ρ = 1 kg/m3, C = 1000 J/kgK 
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Numerical model of coolant flow was verified using the numerical benchmarks 
involving a forced flow in a closed area with a movable top wall - Driven Cavity 
Test (Ghia et al.) [8]. The conditions of the test were as follows: area dimension  
d = 1 m, density ρ = 1 kg/m3, dynamic viscosity � [kg/ms] is depending on the 
Reynolds number. 
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Fig. 3. Comparison of calculation results with the numerical benchmark, Re = 100, 

a) 50x50 nodes, b) 100x100 nodes, c) 150x150 nodes 
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Fig. 4. Comparison of calculation results with the numerical benchmark, Re = 400,  

a) 50x50 nodes, b) 100x100 nodes, c) 150x150 nodes 

Conclusions 

The generalized finite difference method can be successfully applied to prob-
lems with irregular grids. GFDM is effective in the modeling processes for com-
plex geometries. Stabilization of this method allows one to model the flow with 
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large values of forced coolant velocity. The obtained results from the numerical 
model with stabilization suggest some "smoothing" of the results, but it is accepta-
ble. Without the presented stabilization, this numerical model does not lead to ac-
curate results for large Peclet numbers. This model may be used to estimate the 
temperature field during a cooling process for hardening steel tools. 
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