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Abstract. The subject of this paper are the hyperspheres-dimensional Euclidean
space, which are the intersection of sphere and fglames. The paper concerns only
the spheres with the center in the origin of cauatk system and the planes crossing
through this point. Hypersphere parametrization awine integration formulas will
be shown.

1. Explanation of notations used

In the beginning we would like to explain some loé tsymbols and theorems
used in the first part of this paper.

Section of the vectov =[V,,V,,...V.]LUR" from the first tok-th coefficients is
the vectorv® given by:

V =V, M JOR" (1)

Gramian matrix G(a,,a,,...,a, ) of elements a,a,,....a OR" is a symmet-

rical square matrix, which elements are the scpladucts of corresponding
vectors:

(a,.a) (aja,) ... (a,a)

G(al,az,___’ak): <a2:’a1> <a2:'a2> <a2:’a1<>

(a.a) (a.a,) ... (a,.a)

Gramian determinant of elemeng,a,,....a OR" is a determinant of gramian
matrix G(a,,a,,...,3, ):
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o <al,a2> <a1,ak>
A e B I
(ana) (a.a) - [al’

If vector b is orthogonal to every vectat, a,,..,a, then

Glb.a.a,...a)=[c.2,..a) (4)

Theorem 1.1 (of the norm of vector product)
If cisavector product of &, a,,...,a OR" (c=a xa, x...xa,_,), thenitsnorm

isequal to square root of gramian determinant of a,a,,...,a, JR"™

Idl=lc(@.2,....a.) (5)

2. Parametrization of hyperspheres

Consider a set d¢f+1 equations withm variables:

X12 +X22 +---+Xn2 =r2
A+ AX,+. +A X =0
AX +AX,+.. +AX =0 (6)

AaX + A%+ +AX, =0

We assume tha2<k <n-2 (whenk =1 refer to paper [3]) and

A Ay o A
A}l A;” . Af"io (7)
Ac Ac - A

Let a =[A;, AL ALl & =[ALAL LA o & =[AL A AL ] Now
we can begin solving the equation (6). We starfibging the set of vectors or-
thogonal to each other and orthogonal to everyovegt This set will be a basis

for the solutions of (6).
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Step 1
In the first step, we calculate tH{& +1)-dimensional vectomw,, according to for-
mula:

V\& :éjlfﬁ[xa;ﬁl_ X“.xa:((+l (8)
Every coefficient ofw;, can be calculated by the formula:
w; =(-1)7'D, (9)

where D, is a determinant created by omitting thé coefficient in every vector

Ar A o An A A

o
I O
According to theorem 1.1 the norm of vectgris equal to:
ME \/\G(a;ﬂ, a,...a") (11)

Step 2
In the second step, we calculate tthet 2)-dimensional vectomw,, according to
formula:

— sk+2 , xk+2
W, =W, Xa, = X3,

The norm of vectom, is equal to:

||W2|| — \/‘G(Wl, 511«2' 52k+2’-”'akk+ZX — ||V\I1||\/‘G(§lk+2, 52k+2'."’akk+ZX (13)

Step n—k-1
In this step we calculatén —1)-dimensional vector

X, X8 " (12)

—_ xn-1 xn-1 xn-1
W =W oo X XW, XW, X8 X8, X... X3, (24)

with the norm

W = e el |G & & .. ) (15)

Step n—k
Finally we calculate-dimensional vector

W, =W X XW, XW, Xa, Xa, X... Xa, (16)



138 T. Madej, G. Biernat, J. Siedlecki

with the norm

Wn—k

(U U BT N ORI a7

Next we replace the orthogonal set of vectafsw,,...,w,_, by the orthonormal
set, according to the formula:

=

v, = (18)

whereW =[w 0,...0|0R" (0 at(n-k —i) -places).
Set of vectorsy, is a basis for solutions of (6). Let us definen-k as a codi-
mension of our solution, and a matkix as follows:

=

1 11 V12 1n

Y V,, V,, ... V,
vEtEs s (19)

v Vi Vi Vin

Now, let us recall ahdimensional sphere parametrization:

X, =rcost, co$, cos ...cas,

X, =rsint, cod, cos, ...cds,

X, =1 sint, cod, ...co6 , (20)

X =r sint,_,

wheret, 0[0,27], t,,....t,OF £ 7].
By implementing a vector functioR (t) :

[ £(t)] [cost cost,cost,...cost
f,(t)| |sint cost,cost,...cost
F(t)=] f(t) |= sint,, (21)
f..(t) 0
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wheret = [tl,tz,..I,_l] , we can simply write sphere parametrizatiomagt) .
We calculate the parametrization of hypersphersdbying the following equation:

X

Vi =) 22)

X,

Because matri¥ is orthogonal, the solution of (6) is given by:

X, F (Vi Fo(t) + vy f (1) +. 4y of (1))
x=| | =virEQ = r(vlzfl(t)+v22f2:(t)+---+v|2f| ®) 23)
Xn r (Vln fl(t) + V2n fz(t) .. +Vln f| (t))

3. Notations and theorems used for integration on hyperspheres

Set of points given by (23) will be called kdimensional hypersphere and not-
ed asS:

F(Vay F(8) + Vo, fo(0) +. 4V, (1))
(v Fu() + Voo f o)+ v of, (1))

(24)
r (Vln fl(t) + V2n fz(t) T +Vln fl (t ))

Partial derivative of a vectok given by (23) with respect to variable is
a following vector:

Ox _|0x 0%, 0% (25)
ot |t ot Ut

where:

%, vﬁ%+v2i%+...+v“ﬂ (26)
o, e e, a,

J
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We should note as a fact, that

ox
o,

:{rcostjﬂ cos$,,, ...cds, whenj<I| -

For every given matrix

m, m, -- m,
M=M= 2 T,
My My - My

we can define a numbél|, called this matrix module, by

My .. M
M= X :

i <ip <.y

M, .. m,

Theorem 3.1 (of matrix module, [1])

r whenj =1 -1

(27)

(28)

(29)

Let M be a matrix given by (28), and let m =[m,,m,,....m,] be the i-th row
of that matrix. Then the matrix module is equal to square root of gramian matrix of

itsrows

|M|=\/M MT =\/|G(ml,mz,...,ij

(30)

Theorem 3.2 (calculating the matrix determinant according to several rows,

[1])
Let k<n and | =n -k . Then we have
all a12 a.‘n
: : .. : a1i1 aﬁk bul
a&, G, ... 8, . -

b, b b | D sgnl ey g ey
1 2 e iyl I<ip<..<ip <n

b, B, ... B,

1<j;<..<j €n akil e akik hjl
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Theorem 3.3 ([2], §49, Tw. 9)
Let EOR™, ¥(E) be a hypersurface of parametrization y:E - R" and

tOR™. If function f:)(E) - R isinregrable, then the following formula follows:

j fdy(t)zj(foy)|3y(t)|dt (32)

V(E)

4. Integration on hyperspheres

In the last part of this paper we develop the stilg&plained in [3], concerning
integrals of the differential forms. We show theogdr to the hypothesis shown
there and expand it to the case, where the nunfh@ares is greater than 1.

A function w given by

g = D, f .0 OdxD 0 dx (33)

1<iy<iy <..<ijq<n

is called a differential form of-1 order inR".

We define the integral from that form as follows:

Jan= 3 [h o Ox) x OPS b tet)d @9

1<) <)< <ii4<ng

In last paragraph of [3] there was a following hiyy@sis stated:
If «_, is a differential form given by

dx Odx O .dx

i1 I2

(- A A,
a)n—l_ﬁ > SN 1y b duda )
2 2\ 5 1<ip<i,<.<ip,<n Ju ol g dn-2 j
Xl +...+ Xn 2 1512 n-2

then the integral over hypersphesg, is equal to

[ @, =g A +A+. +A?
S

where g,_, denotes the measure of the surface(lofl)-dimensional sphere of

radiusr =1.
For everyl the formula follows:

(35)
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In paper [4], the hypothesis was extended and lateven, so the following
theorem was introduced:

Theorem (of integrating the differential forms over hyper sphere)

Let S be a | -dimensional hypersphere being an intersection of spherein R"
and k planes (that is S be a solution of (6)), and «_, be a differential form given
by

A, A, - A

) =r* SON (i) di iy Jireees)ie "~ ldx Odx O...0d
23 EZQ b benbeal g (6000 000
ot X, X, e
(36)
thentheintegral of ¢y, over § isequal to
[a.= a6 a,..a) (37)
S
Proof:
T T T T
Let t=(t,,t,,...4y), Q={(t1,t2,...,t,_l):05tls2ﬂ,—55t2SE,...,—ESIHSE}.
According to theorem 3.3 we can bring integral ogeto integral overQ :
J-cq_l :jr-l D SON (e JyreensJio) O (38)
S Q ]si1<...<in_zsn.]ji'l""llfl
jk+12i1”“i\-l
where
a)ql a)gz a)<|\ 1
A A A ot ot ot,
I :jz :jk+1 a)gl a)gz a)g‘ )
®= ' Comet, ot oot 39
A AL AT T (39)
XJ1 ij Xlk 1 '
a)ql a)gz )<'\ 1
at'\ 1 atil—1 at'\ 1

According to theorem 3.2, equation (38) can be Bimypitten as:
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0% 0% X,
o, ot ot
ox  ox,  Ox
_[.4l0t . ot = ot (40)
., =|r 1-1 -1 11 |dt
! l A A o A
Ar A, o A,
X1 X2 Xn

From the theorem 3.1 it follows, that the integtlabve can be written as

Icq_lzr‘lj\/G(aX 0x ,ﬁ,al,az,...,ak,xj
S

) ot 'ot, ot

dt (41)

0x 0x 0x
Every vectorx,—,—,...,

ot, 'ot,
the property of gramian determinant (see (4)), are\write:
X

J.ah :r*lj' [“;ZTX D..[»aat—x i/ [G(ay, a,,...,a, )dt (42)
S 1 2 1-1

/[0t
By inserting the values of vector norms, we obfaae (27)):

0x 0
ot,

Inserting this value to our integral yields:
J w.,=4l6(a,a,....a) J cost, cos't,...cos' ™, dt (44)
S Q

Calculating the following integral brings the prdofan end:

is a linear combination o¥,,v,,....v,, so following

x
at,

0X

O Ox|=r' cod, cobt, ...cost,, (43)
1-1

- _ |7T% _
}[ cogt, cost,...cos' t'-ldt_r(l,zﬂ)_a'-l (45)
[ =a.\6(a.a,..a) (46)

S
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