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Abstract. The aim of this paper is to present the implent@niaof the method for solving
linear interval equations using the ‘“interval exted zero” method and multimedia
extensions. The “interval extended zero” methodved! us to reduce the undesirable excess
width effect. Its efficiency was proven before amete we show that it can be used to
perform fast calculations using multimedia extensicSome numerical examples are used
to illustrate the efficiency of our implementatiom comparison with several numerical
libraries for interval arithmetic.

Introduction

Solving the systems of linear equations is coned@s a very important part of
numerical analysis. But in real life situationsrgraeters of these systems often are
charged by different kinds of uncertainties [143gontief's input output model of
economy [4] can be taken as an example [5]. In n@®es, uncertainty can be
represented by intervals. Since the seminal puiicaby Moore's [6], a rapid
development of interval arithmetic had been obskrve

The system of linear interval equations can begmiesl as follows:

[A[A = B 1)

where[A] is an interval matrix,[b] is an interval vector anflX] is an interval

solution vector. Generally such a system has nactegalutions. There are,
however, methods for approximate solution of (1)e Hominant approaches to the
solution of interval linear system are based onttkating (1) as a set of real
valued equations whose parameters belong to theespmmding intervals [7].
However, these approaches are NP hard problems, fiadthg a solution
of even asmall system is a very difficult task.eThndesirable feature of
known approaches to the solution of (1) is the sxaeidth effect, i.e., the rapid
increasing of resulting intervals width as a comsege of interval
calculations.
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Some methods for reducing excess width effect thighuse of various versions
of the stationary single-step iteration method wanalyzed by V. Zyuzin [8].
Kupriyanova [9] proved the convergence of thisatiee process to the so-called
maximal inner solution of problem (1) under spe¢iaiplicit) restrictions on the
input data[ A}, [b] and on the initial approximation. Markov [10, Fafmulated

these restrictions explicitly in context of Jacdppe iterative method for the
solution of (1). However, in many cases these nusttgive inverted intervals as a
result (when the lower bound is greater than th@eupound). Another approach to
reducing the excess width effect is the solution(Igf based on the concept of
Jnterval extended zero” [12, 13]. It was proverattlthis method gives narrow
interval results. In [14], “interval extended zeréthod was presented and used as
a modification of classic interval division.

In the current report we show that this method lbarused to solve big linear
interval systems using the so-called SSE [15] mmatlia extensions which
improves the efficiency of the calculations. Siivterval arithmetic operations are
based on the bounds of intervals, it seems nataralake those computations in
parallel.

In this paper, we propose the implementation ofgletion of the systems of
interval linear equations with the use of ,intereatended zero” method and SSE
extensions.

The rest of the paper is set as follows. In Sectiowe recall the fundamentals
of ,interval extended zero” method and preseniriterpretation as the modified
interval division. In section 2 we present the aation of modified interval
division to the solution of interval problem (1) daillustrative examples with
comparison to other numerical interval packagest kaction concludes with some
remarks.

1. Interval arithmetic and ,interval extended zero” method for solving
linear equations

Let X :[l(’;(} and Y :[_y,_y} are intervals and@UO¢ 5 [J,} then
according to [6]:

X@Y={z=x@ yad X Oy ¥ 2)
On the base of (2), four interval arithmetic opersg can be defined as follows:

X +Y = [_x+_y_x+_3ﬂ (3)

X-Y= [_x—_y_x—_ﬂ (4)
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X D(:[min{jE_}y_@y_ﬁy_ﬁ}/, ma>{_bZ_])7 Xy S/D_k}} (5)
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One of the problems of interval arithmetic is threass width effect. In [12, 13],
the solution of interval linear equations using thethod based on the concept of
Jnterval extended zero” was proposed. This metleodsiderably reduces this
undesirable effect. Here we present the basicsnbthod.

Let us consider the simplest equation

ax—-b=0 (7)

wherea, b are real values.
Its conventional interval extension leads to therival equation

[a][x] —[b]=0 (8)

which seems to be senseless because its left gramtsents an interval value,
whereas the right part is the non-interval degdedrazero. Formally, when
extending Eq. (7) one obtains not only intervaliwnleft hand side, but interval
zero on the right hand side. Generally, this irderzero cannot be degenerated
interval [0,0].

Therefore, the concepts of “interval zero extensiand “interval zero” has
been proposed in [13]. The operation of “intervata extension” provides an
“interval zero” in the right hand side of extended. (8). Since “interval zero” is
not a degenerated interval, such approach malesdible to solve the problem of
correct interval extension of Eq. (8).

In conventional interval analysis, it is usuallysased that any interval
containing zero may be considered as “interval "zdret us look to this problem
from another point of view. Without loss of genéyal we can define the
degenerated (usual) zero as the result of operatmrnvherea is any real valued
number or variable. Hence, in a similar way we dafine an “interval zero” as the
result of operationd]-[a], where f] is an interval. It is easy to see that for any

interval [a] we get [g,a]—[g,a]z[g—a,a—g]z[— (a-a),a-al|. Therefore, in any
case the result of interval subtracti@f[a], is an interval centered around 0. Thus,
if we want to treat a result of subtraction of twdentical intervals as “interval
zero”, then the most general definition of suchréZewill be “interval zero is an
interval symmetrical with respect to 0”. It must bephasized that introduced
definition says nothing about the width of “interzaro”.

Thus, when extending Eqg. (8) with previously unknovalues of variables in
the left hand side, only what we can say abourtitife hand side is that it should
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be an interval symmetrical with respect to 0 witht defined width. Hence, as the
result of interval extension of Eq. (8) in genarase we get

[a.a]fix,x]-[ b8 =[-y.} (9)

In fact, the right hand side of Eq. (9) is somesiwl centered around zero,
which can be treated as interval extension of igjie hand side of Eq. (8), i.e., as
an interval extension of 0. The value gf in Eq. (9) is not yet defined since the

values ol X, X are also not defined.
For positive interval values we get

|

From Eqg. (10) we obtain only one linear equatiothvitvo unknown variables
X and X:

=Y
¥

(10)

[T e)
L1 15
o ol
T

ax—-b+ ax- b=0 (11)

If there are some constraints on the values of owknvariables X and;(, then
Eq. (11) with these constraints may be consideredha so-called Constraint
Satisfaction ProblemQSP [16] and its interval solution may be obtainetdeTirst

constraint on the variable X and X is a solution of Eq. (11) assumiwz(;:;(. In

. . b+b .
this degenerated case we get the solution of Bj.adX,= =—=. It is seen that
ata

X is the upper bound fcX and the lower bound fcx. The natural low bound

m

for X and upper bound fcx may be defined using basic definitions of interval

arithmetic (6) as X==,

- b b
=, X=—. Thus, we have |x|=|=, and
a a [_] [a Xm}

- b
[x]z{)gn,g] These intervals can be narrowed taking into atcdig. (11),

which in the spirit ofCSPis treated as a constraint.
From (11) we get:

x= t_)+ba—aX1)—(D{Xm’_b} X= w—_"—iz(,)_(m[;b,)gn}l(ﬂ{g,xn} (12)
a a
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Obviously, wher X is maximal, i.e.,x=—, we get the minimal value (X, i.e.,

o | ol

+_ -
Xenin —Q——?. Similarly, from (12) we get the maximal value X, i.e.,
a a
— _b+b ab . .. b - b
Xmax = ==——"=5. Since it is possible thiX, <= and Xmax >—, we get the
a a a a
following interval solution:
|, b¥blrq_|b+b o
[x _{)‘(max’ﬁ}’[XJ_L+5’XW] )
_ b b+b ab) - _ b b+b ab
WhereXmaX— max — Yy 2 ,Xmm =min —,—__—2
a a a a a 3

Expressions (13) define all possible solutions gf @®). The values O&min,
Xmax cCONstitute the interval which produces the widegerval zero after
substitution of them in Eq. (9). In other wordse thhaximum interval solution's

: - . ab
width W, = Xmin — Xax COrresponds to the maximum valueyf y . =—-Db.
a

Substitution of degenerated solutiXx = X= X, in Eq. (9) produces the minimum

ab-ab
valueofy: y.. = ==.
ata

Thus, the formal interval solution (13) factualgpresents the continuous set of
nested interval solutions of Eq. (9). It is shown[13] that this set of interval
solutions can be naturally interpreted as a fuzeylver. We can see that values of

Yy characterize the closeness of right hand sidegof{® to the degenerated zero
and minimum valuey,;, is defined exclusively by interval parametealgnd .

Hence, the values ¢y may be considered, in a certain sense, as a neeafur

interval solution's uncertainty caused by theahitincertainty of Eq. (9).
Therefore we introduce

a:]._ y_ymin (14)

which may be treated as a certainty degree ofviateyolution of Eq. (9). We can
see thata rises from 0 to 1 with decreasing of interval'gltii from maximum
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value to 0, i.e., with increasing of solution'stagity. Consequently, the values of
a may be treated as labels @fcuts representing some fuzzy solution of Eq. (9).
Finally, the solution is obtained in form of triarigr fuzzy number

~ +
X=<X s
Zmax a+

The resulting fuzzy solution can be reduced to ititerval one using well
known defuzzification procedures. In our case, dsfied left and right
boundaries of the solution can be represented as

ey
(on]]

Q |

%} (15)

f X(a)do j;((a)da
Koo = O Yoot = 0 (16)
_[ da J-da
0 0

For example, in the case d][[b]>0, in [12, 13] from (10), (14) and (16) the
following expressions have been obtained:

l(def (17)

I
o | Tl
<
S
<
>
|
o
+
<
3
8
| +
<
3
>

On the other hand, we can treat it as an approgireatution of the initial
interval equation (8), which in turn can be formalresented in the algebraically
equivalent form of interval division [x]=[b]/[a]. Aerefore, the solution (17) can be
formally treated as the result of modified intendiliision. Hereinafter, such
interval solutions can be treated as the resultsatfified interval division.

It is shown in [12, 13] that proposed method presid considerable reducing
of resulting interval's length in comparison wittat obtained using conventional
interval arithmetic rules.

2. Solving interval linear systems using ,interval gtended zero”
method

Interval Gaussian elimination algorithm was usedsatve Eqg. (1). It can be
presented as follows:
a) forward substitution:

[m]=[a ]/{a]. [a]=[a ]-[m ]Da] (18)
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[, |=[b; ][ m; b (19)

wherei:=1, 2,..n, j:=i+1, ...,n, k::i,...ﬁ),D[a,-i]
b) backward substitution:

(9 = [«ﬂtﬁﬂ (20)

B [b[]a ][ g 1)

[x

where i =1, 2,...nOD[aﬂ] .

Two implementations of the interval Gaussian atyoni have been developed.
The modified interval Gaussian elimination algamtMGEA) with the use of the
“interval extended zero” method and the usual Gaansslimination algorithm
(UGEA) with the use of the classic interval division g®n. In the
implementation oMGEA, all division operations in (18) and (21) were esgld
with modified interval division defined in the pieus Section.

Multimedia SSE extensions [15] were used for im@ating bothMGEA and
UGEA These processor extensions were designed by toteimprove the
efficiency of the computations. They contain regjistthat can store integer and
floating point numbers and all operations on themm lse performed in parallel.

The potential of multimedia extensions has beeokiyirecognized by interval
community. Since intervals are stored in the menaarywo floating point numbers
(usually double precision), SSE extensions seerhet@ very good solution to
increase the efficiency of interval computationghdugh first experiments with
SSE extensions conducted by von Gudenberg [17] wetrenthusiastic, Lambov
[18] and Goualard [19], proved that SSE extensiars increase the performance
of interval computations.

We have tested our implementations using few exasnpl randomly generated
interval matrices and vectors on AMD Dual-Core @gre2.2 GHz machine. Three
well known and often used within interval communiigraries were taken for
comparison with our method: RealLib [20], ProfilA [21] and Boost [22].
ReallLib is used mostly for real numbers, but ibatentains module for interval
arithmetic. Similar to our approach, ReallLib is Iempented with the use of
multimedia SSE extensions. Boost is a library ferfarming fast calculations on
real numbers and intervals. Profil/BIAS is desigséatttly for interval arithmetic.
All these libraries are implemented with the use ctdssic interval division
operation (6), and for all of them usual Gauss ielitiion algorithm have been
implemented.
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To estimate the quality of obtained results, wevig® the special relative index
of uncertaintyRIU. It may serve as the quantitative measure of ¥oess width
effect. It was calculated on resulting vectors asaaimal value from all elements

RIU = max{(x, = ). (- %, 100% 22)
Xn

where X, = Q(+;<)/2. RIU was calculated as a maximum value obtained on the

elements of the interval solution vectors.

Table 1 presents the results obtained for 3 ranglgemherated interval matrices
and vectors (containing 2000, 4000 and 6000 rowsg.MGEA column contains
results obtained using modified Gaussian elimimatagdgorithm based on the
modified interval division,UGEA column contains results obtained using usual
Gaussian elimination algorithm with the use of siagnterval division (6). Next
three columns contain results obtained using RbalReallLib, Profil/BIAS
(BIAS and BoostBoos]) libraries respectively. BecauB#U values were equal for
RealLib, Profil/BIAS and Boost libraries, thereasly one column containinglU
values for all of them.

Table 1
Calculations time andRIU values for interval Gaussian algorithm

MGEA UGEA RealLib BIAS Boost
RIU,% | Time,s| RIU,% Time, 9 RIU,% Time, 5 Time)s imeTs
2000 | 14.475 103.259 29.234 103.382 29.234  141.710 46.988 413.571
4000 | 14.218 1852.32529.237| 1851.594 29.237| 3321.393| 6470.465  6559.811
6000 | 14.287| 8177.59029.248| 8190.38% 29.248| 16621.638 27870.882 24160.457

N

Let us first analyze thRIU values. All three libraries (RealLib, Profil/BlAghd
Boost) are implemented with the use of the clasgierval division, just as our
UGEAimplementationRIU values for all of them are equ&l{ values calculated
for intervals in the input matrices and vectors eveaqual to 10%)MGEA
implementation, using “interval extended zero”, hoet provide much better
results: intervals were more than 50% narrower thiags obtained using classic
interval division in all cases.

Obtained calculation times confirm the efficiency @ur implementation.
RealLib library was two times slower for biggesttma whereas both Profil/BIAS
and Boost libraries were more than three times aslotvanMGEA and UGEA
implementations.

We can conclude thaMGEA and UGEA implementations are practically
equally effective. This proves, that the “intereadtended zero” method does not
affect the speed of the interval Gaussian elimamadilgorithm.
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Conclusions

A new approach to solve linear interval equatiosteays based on the concepts
of “interval extended zero” method using multime8i8E extensions is presented.
It is shown that this method can be naturally gdas a modified interval division
and used in practical applications. This method ardy allows us to reduce the
undesirable excess width effect, but also perfaast interval computations using
the multimedia SSE extensions. Some examples batedndomly generated
interval matrices and vectors were used to prove #ificiency of our
implementation in solving interval linear systenifie computations using our
algorithms MGEA and UGEA are considerably faster than those of popular
RealLib, Profil/BIAS and Boost libraries. Furthemap the “interval extended
zero” method does not affect the speed of the tlons. BothMGEAandUGEA
are equally effective.
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