
Scientific Research of the Institute of Mathematics and Computer Science

SOLVING SYSTEMS OF LINEAR INTERVAL EQUATIONS
USING THE “INTERVAL EXTENDED ZERO” METHOD

AND MULTIMEDIA EXTENSIONS

Mariusz Pilarek

Institute of Computer and Information Sciences, Czestochowa University of Technology, Poland
mariusz.pilarek@icis.pcz.pl

Abstract. The aim of this paper is to present the implementation of the method for solving
linear interval equations using the “interval extended zero” method and multimedia
extensions. The “interval extended zero” method allows us to reduce the undesirable excess
width effect. Its efficiency was proven before and here we show that it can be used to
perform fast calculations using multimedia extensions. Some numerical examples are used
to illustrate the efficiency of our implementation in comparison with several numerical
libraries for interval arithmetic.

Introduction

Solving the systems of linear equations is considered as a very important part of
numerical analysis. But in real life situations, parameters of these systems often are
charged by different kinds of uncertainties [1-3]. Leontief's input output model of
economy [4] can be taken as an example [5]. In many cases, uncertainty can be
represented by intervals. Since the seminal publication by Moore's [6], a rapid
development of interval arithmetic had been observed.

The system of linear interval equations can be presented as follows:

 [][] []A x b= (1)

where []A is an interval matrix, []b is an interval vector and []x is an interval
solution vector. Generally such a system has no exact solutions. There are,
however, methods for approximate solution of (1). The dominant approaches to the
solution of interval linear system are based on the treating (1) as a set of real
valued equations whose parameters belong to the corresponding intervals [7].
However, these approaches are NP hard problems, and finding a solution
of even a small system is a very difficult task. The undesirable feature of
known approaches to the solution of (1) is the excess width effect, i.e., the rapid
increasing of resulting intervals width as a consequence of interval
calculations.

Please cite this article as:
Mariusz Pilarek, Solving systems of linear interval equations using the "interval extended zero" method and multimedia
extensions, Scientific Research of the Institute of Mathematics and Computer Science, 2010, Volume 9, Issue 2, pages
203-212.
The website: http://www.amcm.pcz.pl/

M. Pilarek

204

Some methods for reducing excess width effect with the use of various versions
of the stationary single-step iteration method were analyzed by V. Zyuzin [8].
Kupriyanova [9] proved the convergence of this iterative process to the so-called
maximal inner solution of problem (1) under special (implicit) restrictions on the
input data []A , []b and on the initial approximation. Markov [10, 11] formulated
these restrictions explicitly in context of Jacobi type iterative method for the
solution of (1). However, in many cases these methods give inverted intervals as a
result (when the lower bound is greater than the upper bound). Another approach to
reducing the excess width effect is the solution of (1) based on the concept of
„interval extended zero” [12, 13]. It was proven that this method gives narrow
interval results. In [14], “interval extended zero” method was presented and used as
a modification of classic interval division.

In the current report we show that this method can be used to solve big linear
interval systems using the so-called SSE [15] multimedia extensions which
improves the efficiency of the calculations. Since interval arithmetic operations are
based on the bounds of intervals, it seems natural to make those computations in
parallel.

In this paper, we propose the implementation of the solution of the systems of
interval linear equations with the use of „interval extended zero” method and SSE
extensions.

The rest of the paper is set as follows. In Section 1, we recall the fundamentals
of „interval extended zero” method and present its interpretation as the modified
interval division. In section 2 we present the application of modified interval
division to the solution of interval problem (1) and illustrative examples with
comparison to other numerical interval packages. Last section concludes with some
remarks.

1. Interval arithmetic and „interval extended zero” method for solving
linear equations

Let ,X x x =   and ,Y y y =   are intervals and { }@ , , , /∈ + − ⋅ then

according to [6]:

 { }@ @ ,X Y z x y x X y Y= = ∈ ∧ ∈ (2)

On the base of (2), four interval arithmetic operations can be defined as follows:

 ,X Y x y x y + = + +  (3)

 ,X Y x y x y − = − −  (4)

Solving systems of linear interval equations using the “interval extended zero” method …

205

 { } { }min , , , ,max , , ,X Y x y x y x y x y x y x y x y x y ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

, (5)

1 1

, , ,0 ,
X

x x y y
Y yy

 
   = ⋅ ∉    

  
. (6)

One of the problems of interval arithmetic is the excess width effect. In [12, 13],
the solution of interval linear equations using the method based on the concept of
„interval extended zero” was proposed. This method considerably reduces this
undesirable effect. Here we present the basics this method.

Let us consider the simplest equation

 ax – b = 0 (7)

where a, b are real values.
Its conventional interval extension leads to the interval equation

 [a][x] – [b]=0 (8)

which seems to be senseless because its left part represents an interval value,
whereas the right part is the non-interval degenerated zero. Formally, when
extending Eq. (7) one obtains not only interval on its left hand side, but interval
zero on the right hand side. Generally, this interval zero cannot be degenerated
interval [0,0].

Therefore, the concepts of “interval zero extension” and “interval zero” has
been proposed in [13]. The operation of “interval zero extension” provides an
“interval zero” in the right hand side of extended Eq. (8). Since “interval zero” is
not a degenerated interval, such approach makes it possible to solve the problem of
correct interval extension of Eq. (8).

In conventional interval analysis, it is usually assumed that any interval
containing zero may be considered as “interval zero”. Let us look to this problem
from another point of view. Without loss of generality, we can define the
degenerated (usual) zero as the result of operation a-a, where a is any real valued
number or variable. Hence, in a similar way we can define an “interval zero” as the
result of operation [a]−[a], where [a] is an interval. It is easy to see that for any

interval [a] we get [] [] [] []aaaaaaaaaaaa −−−=−−=−),(,,, . Therefore, in any
case the result of interval subtraction [a]-[a], is an interval centered around 0. Thus,
if we want to treat a result of subtraction of two identical intervals as “interval
zero”, then the most general definition of such “zero” will be “interval zero is an
interval symmetrical with respect to 0”. It must be emphasized that introduced
definition says nothing about the width of “interval zero”.

Thus, when extending Eq. (8) with previously unknown values of variables in
the left hand side, only what we can say about the right hand side is that it should

M. Pilarek

206

be an interval symmetrical with respect to 0 with not defined width. Hence, as the
result of interval extension of Eq. (8) in general case we get

 []a,a x,x b,b y, y     ⋅ − = −      (9)

In fact, the right hand side of Eq. (9) is some interval centered around zero,
which can be treated as interval extension of the right hand side of Eq. (8), i.e., as
an interval extension of 0. The value of y in Eq. (9) is not yet defined since the

values of x , x are also not defined.
For positive interval values we get

,

.

a x b y

a x b y

 ⋅ − = −


⋅ − =
 (10)

From Eq. (10) we obtain only one linear equation with two unknown variables

x and x :

 0ax b ax b− + − = (11)

If there are some constraints on the values of unknown variables x and x , then
Eq. (11) with these constraints may be considered as the so-called Constraint
Satisfaction Problem (CSP) [16] and its interval solution may be obtained. The first

constraint on the variables x and x is a solution of Eq. (11) assuming x= x . In

this degenerated case we get the solution of Eq. (11) as
a+a

b+b
=xm . It is seen that

mx is the upper bound for x and the lower bound for x . The natural low bound

for x and upper bound for x may be defined using basic definitions of interval

arithmetic (6) as x=
a

b
,

a

b
x = . Thus, we have []x = , m

b
x

a

 
  

 and

,m

b
x x

a

 
  =   

 
. These intervals can be narrowed taking into account Eq. (11),

which in the spirit of CSP is treated as a constraint.
From (11) we get:

 , m

b+b ax b
x = x x ,

a a

 − ∈  
 

, , m

b+b ax b
x = x ,x

a a

−  ∈   
m

b
x ,x

a

 ∈   
 (12)

Solving systems of linear interval equations using the “interval extended zero” method …

207

 Obviously, when x is maximal, i.e.,
b

x =
a

, we get the minimal value of x , i.e.,

min 2

b+b ab
x =

a a
− . Similarly, from (12) we get the maximal value of x , i.e.,

max 2

b+b a b
x =

a a

⋅− . Since it is possible that minx <
a

b
 and max

b
x

a
> , we get the

following interval solution:

 [] max

b+b
x = x ,

a+a

 
 
 

, min
b+b

x = ,x
a+a

 
    

 
, (13)

where max 2max
b b+b ab

x = ,
a a a

 
− 

 
, min 2min

b b+b a b
x = ,

a a a

 ⋅− 
 

Expressions (13) define all possible solutions of Eq. (9). The values of minx ,

maxx constitute the interval which produces the widest interval zero after

substitution of them in Eq. (9). In other words, the maximum interval solution's

width maxw = minx – maxx corresponds to the maximum value of y : max

ab
y = b

a
− .

Substitution of degenerated solution mx = x = x in Eq. (9) produces the minimum

value of y : min

ab ab
y =

a+a

−
.

Thus, the formal interval solution (13) factually represents the continuous set of
nested interval solutions of Eq. (9). It is shown in [13] that this set of interval
solutions can be naturally interpreted as a fuzzy number. We can see that values of
y characterize the closeness of right hand side of Eq. (9) to the degenerated zero

and minimum value miny is defined exclusively by interval parameters [a] and [b].

Hence, the values of y may be considered, in a certain sense, as a measure of
interval solution's uncertainty caused by the initial uncertainty of Eq. (9).

Therefore we introduce

minmax

min1
yy

yy
=α

−
−− (14)

which may be treated as a certainty degree of interval solution of Eq. (9). We can
see that α rises from 0 to 1 with decreasing of interval's width from maximum

M. Pilarek

208

value to 0, i.e., with increasing of solution's certainty. Consequently, the values of
α may be treated as labels of α -cuts representing some fuzzy solution of Eq. (9).
Finally, the solution is obtained in form of triangular fuzzy number

 minmax

b+b
x= x , ,x

a+a

 
 
 

% (15)

The resulting fuzzy solution can be reduced to the interval one using well
known defuzzification procedures. In our case, defuzzified left and right
boundaries of the solution can be represented as

∫

∫
1

0

1

)

dα

dα(αx

=x o
def ,

∫

∫
1

0

1

)

dα

dα(αx

=x o
def (16)

For example, in the case of [a], [b]>0, in [12, 13] from (10), (14) and (16) the
following expressions have been obtained:

a

yy

a

b
=xdef 2

minmax −− ,
a

y+y
+

a

b
=xdef

2
minmax (17)

On the other hand, we can treat it as an approximate solution of the initial
interval equation (8), which in turn can be formally presented in the algebraically
equivalent form of interval division [x]=[b]/[a]. Therefore, the solution (17) can be
formally treated as the result of modified interval division. Hereinafter, such
interval solutions can be treated as the results of modified interval division.

It is shown in [12, 13] that proposed method provides a considerable reducing
of resulting interval's length in comparison with that obtained using conventional
interval arithmetic rules.

2. Solving interval linear systems using „interval extended zero”
method

Interval Gaussian elimination algorithm was used to solve Eq. (1). It can be
presented as follows:
a) forward substitution:

 [] []/ ,ji ji ii jk jk ji ikm = a a a = a m a         − ⋅          (18)

Solving systems of linear interval equations using the “interval extended zero” method …

209

 []j j ji ib = b m b     − ⋅      (19)

where i := 1, 2,...n, j:=i+1, ...,n, k:=i,...n, []0 iia∉

b) backward substitution:

1

[]
j n

ij j
j

s a x
=

=

   = ⋅   ∑ (20)

 [] [] []
[]
i

i
ii

b s
x

a

−
= (21)

where i := 1, 2,...n, []0 iia∉ .

Two implementations of the interval Gaussian algorithm have been developed.
The modified interval Gaussian elimination algorithm (MGEA) with the use of the
“interval extended zero” method and the usual Gaussian elimination algorithm
(UGEA) with the use of the classic interval division operation. In the
implementation of MGEA, all division operations in (18) and (21) were replaced
with modified interval division defined in the previous Section.

Multimedia SSE extensions [15] were used for implementing both MGEA and
UGEA. These processor extensions were designed by Intel to improve the
efficiency of the computations. They contain registers that can store integer and
floating point numbers and all operations on them can be performed in parallel.

The potential of multimedia extensions has been quickly recognized by interval
community. Since intervals are stored in the memory as two floating point numbers
(usually double precision), SSE extensions seem to be a very good solution to
increase the efficiency of interval computations. Although first experiments with
SSE extensions conducted by von Gudenberg [17] were not enthusiastic, Lambov
[18] and Goualard [19], proved that SSE extensions can increase the performance
of interval computations.

We have tested our implementations using few examples of randomly generated
interval matrices and vectors on AMD Dual-Core Opteron 2.2 GHz machine. Three
well known and often used within interval community libraries were taken for
comparison with our method: RealLib [20], Profil/BIAS [21] and Boost [22].
RealLib is used mostly for real numbers, but it also contains module for interval
arithmetic. Similar to our approach, RealLib is implemented with the use of
multimedia SSE extensions. Boost is a library for performing fast calculations on
real numbers and intervals. Profil/BIAS is designed strictly for interval arithmetic.
All these libraries are implemented with the use of classic interval division
operation (6), and for all of them usual Gauss elimination algorithm have been
implemented.

M. Pilarek

210

To estimate the quality of obtained results, we provide the special relative index
of uncertainty, RIU. It may serve as the quantitative measure of the excess width
effect. It was calculated on resulting vectors as a maximal value from all elements

() ()()

%100
,max

= ⋅−−

m

mm

x

xxxx
RIU (22)

where () 2/xxxm += . RIU was calculated as a maximum value obtained on the

elements of the interval solution vectors.
Table 1 presents the results obtained for 3 randomly generated interval matrices

and vectors (containing 2000, 4000 and 6000 rows). The MGEA column contains
results obtained using modified Gaussian elimination algorithm based on the
modified interval division, UGEA column contains results obtained using usual
Gaussian elimination algorithm with the use of classic interval division (6). Next
three columns contain results obtained using RealLib (RealLib), Profil/BIAS
(BIAS) and Boost (Boost) libraries respectively. Because RIU values were equal for
RealLib, Profil/BIAS and Boost libraries, there is only one column containing RIU
values for all of them.

Table 1

Calculations time and RIU values for interval Gaussian algorithm

N
MGEA UGEA RealLib BIAS Boost

RIU,% Time, s RIU,% Time, s RIU,% Time, s Time, s Time, s

2000 14.475 103.259 29.234 103.382 29.234 141.710 446.958 413.571

4000 14.218 1852.325 29.237 1851.594 29.237 3321.393 6470.465 6559.811

6000 14.287 8177.590 29.248 8190.385 29.248 16621.638 27870.882 24160.457

Let us first analyze the RIU values. All three libraries (RealLib, Profil/BIAS and

Boost) are implemented with the use of the classic interval division, just as our
UGEA implementation. RIU values for all of them are equal (RIU values calculated
for intervals in the input matrices and vectors were equal to 10%). MGEA
implementation, using “interval extended zero”, method provide much better
results: intervals were more than 50% narrower than ones obtained using classic
interval division in all cases.

Obtained calculation times confirm the efficiency of our implementation.
RealLib library was two times slower for biggest matrix, whereas both Profil/BIAS
and Boost libraries were more than three times slower than MGEA and UGEA
implementations.

We can conclude that MGEA and UGEA implementations are practically
equally effective. This proves, that the “interval extended zero” method does not
affect the speed of the interval Gaussian elimination algorithm.

Solving systems of linear interval equations using the “interval extended zero” method …

211

Conclusions

A new approach to solve linear interval equation systems based on the concepts
of “interval extended zero” method using multimedia SSE extensions is presented.
It is shown that this method can be naturally treated as a modified interval division
and used in practical applications. This method not only allows us to reduce the
undesirable excess width effect, but also perform fast interval computations using
the multimedia SSE extensions. Some examples based of randomly generated
interval matrices and vectors were used to prove the efficiency of our
implementation in solving interval linear systems. The computations using our
algorithms MGEA and UGEA are considerably faster than those of popular
RealLib, Profil/BIAS and Boost libraries. Furthermore, the “interval extended
zero” method does not affect the speed of the calculations. Both MGEA and UGEA
are equally effective.

References

[1] Buckley J.J., Solving fuzzy equations in economics and finance, Fuzzy Sets & Systems 1992,
48.

[2] Buckley J.J., The fuzzy mathematics of finance, Fuzzy Sets & Systems 1987, 21, 257-273.
[3] Chen S.H., Yang X.W., Interval finite element method for beam structures, Finite Elements in

Analysis and Design 2000, 34, 75-88.
[4] Leontief W., Quantitative input output relations in the economic system of the United States,

Review of Economics and Statistics 18, 1396, 100-125.
[5] Wu C.C., Chang N.B., Grey input output analysis and its application for environmental cost

allocation, European Journal of Operational Research 2003, 145, 175-201.
[6] Moore R.E., Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD

thesis, Stanford University 1962.
[7] Kearfott B., Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, The

Netherlands 1996.
[8] Zyuzin V., An iterative method for solving system of algebraic segment equations of the first

order, Differential Equations and the Theory of Functions, Saratov State University, Saratov
1990, 72-82 (in Russian).

[9] Kupriyanova L., Inner estimation of the united solution set to interval linear algebraic system,
Reliable Computing 1995, 1(1) 15-31.

[10] Markov S., An iterative method for algebraic solution to interval equations, Applied Numerical
Mathematics 1999, 30, 225-239.

[11] Markov S., Popova E., Ullrich C., On the Solution of Linear Algebraic Equations Involving
Interval Coefficients, Iterative Methods in Linear Algebra II, IMACS Series in Computational
and Applied Mathematics 1996, 4, 216-225.

[12] Dymova L., Sevastjanov P., Fuzzy solution of interval linear equations, Lecture Notes in
Computer Science 2008, 4697, 1392-1399.

[13] Dymova L., Sevastjanov P., A new method for solving interval and fuzzy equations: linear case,
Information Sciences 2009, 17, 925-937.

[14] Dymova L., Pilarek M., Wyrzykowski R., Solving the systems of interval linear equations with
use of modified interval dividing procedure, Lecture Notes in Computer Science 2010, 6068.

M. Pilarek

212

[15] Intel SSE4 Programming Reference, http://software.intel.com/file/18187/
[16] Cleary J.C., Logical arithmetica. Future Computing Systems 1987, 2, 125-149.
[17] Wolff von Gudenberg J., Interval Arithmetic on Multimedia Architectures, RR 265, Lehrstuhl

fur Informatik II. Universitat Wurzburg, October 2000.
[18] Lambov B., Interval Arithmetic using SSE 2, Lecture Notes in Computer Science 2008, 5045,

102-113.
[19] Goualard F., Fast and Correct SIMD Algorithms for Interval Arithmetic, INRIA, 2008,

http://hal.archives-ouvertes.fr/docs/00/28/84/56/PDF/intervals-sse2-long-paper.pdf
[20] Lambov B., RealLib 3 Manual, http://www.brics.dk/ barnie/RealLib/RealLib.pdf
[21] Knuppel O., Profil/BIAS v2.0, http://www.ti3.tu-harburg.de/keil/profil/Profil2.ps.gz
[22] Boost Interval Arithmetic Library,

http://www.boost.org/doc/libs/1_43_0/libs/numeric/interval/doc/interval.htm

