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Abstract. The aim of this paper is to present the implementation of the method for solving 
linear interval equations using the “interval extended zero” method and multimedia 
extensions. The “interval extended zero” method allows us to reduce the undesirable excess 
width effect. Its efficiency was proven before and here we  show that it can be used to 
perform fast calculations using multimedia extensions. Some numerical examples are used 
to illustrate the efficiency of our implementation in comparison with several numerical 
libraries for interval arithmetic. 

Introduction 

Solving the systems of linear equations is considered as a very important part of 
numerical analysis. But in real life situations, parameters of these systems often are 
charged by different kinds of uncertainties [1-3]. Leontief's input output model of 
economy [4] can be taken as an example [5]. In many cases,  uncertainty can be 
represented by intervals. Since the seminal publication by Moore's [6], a rapid 
development of interval arithmetic had been observed. 

The system of linear interval equations can be presented as follows:  

 [ ][ ] [ ]A x b=   (1) 

where [ ]A  is an interval matrix,  [ ]b  is an interval vector and [ ]x  is an interval 
solution vector. Generally such a system has no exact solutions. There are, 
however, methods for approximate solution of (1). The dominant approaches to the 
solution of interval linear system are based on the treating (1) as a set of real  
valued equations whose parameters belong to the corresponding intervals [7]. 
However, these approaches are NP hard problems, and finding a solution  
of even a small system is a very difficult task. The undesirable feature of  
known approaches to the solution of (1) is the excess width effect, i.e., the rapid  
increasing of resulting intervals width as a consequence of interval  
calculations.  
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Some methods for reducing excess width effect with the use of various versions 
of the stationary single-step iteration method were analyzed by V. Zyuzin [8]. 
Kupriyanova [9] proved the convergence of this iterative process to the so-called 
maximal inner solution of problem (1) under special (implicit) restrictions on the 
input data [ ]A , [ ]b  and on the initial approximation. Markov [10, 11] formulated 
these restrictions explicitly in context of Jacobi type iterative method for the 
solution of (1). However, in many cases these methods give inverted intervals as a 
result (when the lower bound is greater than the upper bound). Another approach to 
reducing the excess width effect is the solution of (1) based on the concept of 
„interval extended zero” [12, 13]. It was proven that this method gives narrow 
interval results. In [14], “interval extended zero” method was presented and used as 
a modification of classic interval division. 

In the current report we show that this method can be used to solve big linear 
interval systems using the so-called SSE [15] multimedia extensions which 
improves the efficiency of the calculations. Since interval arithmetic operations are 
based on the bounds of intervals, it seems natural to make those computations in 
parallel.  

In this paper, we propose the implementation of the solution of the systems of 
interval linear equations with the use of „interval extended zero” method and SSE 
extensions.  

The rest of the paper is set as follows. In Section 1, we recall the fundamentals 
of „interval extended zero” method and present its interpretation as the modified 
interval division. In section 2 we present the application of modified interval 
division to the solution of interval problem (1) and illustrative examples with 
comparison to other numerical interval packages. Last section concludes with some 
remarks. 

1. Interval arithmetic and „interval extended zero” method for solving 
linear equations 

Let ,X x x =   and ,Y y y =    are intervals and { }@ , , , /∈ + − ⋅  then 

according to [6]:  

 { }@ @ ,X Y z x y x X y Y= = ∈ ∧ ∈  (2) 

On the base of (2), four interval arithmetic operations can be  defined as follows: 

 ,X Y x y x y + = + +    (3) 

 ,X Y x y x y − = − −    (4) 
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 { } { }min , , , ,max , , ,X Y x y x y x y x y x y x y x y x y ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
 

,  (5) 

 
1 1

, , ,0 ,
X

x x y y
Y yy

 
   = ⋅ ∉    

  
. (6) 

One of the problems of interval arithmetic is the excess width effect. In [12, 13], 
the solution of interval linear equations using the method based on the concept of 
„interval extended zero” was proposed. This method considerably reduces this 
undesirable effect. Here we present the basics this method. 

Let us consider the simplest equation  

  ax – b = 0 (7) 

where a, b are real values.  
Its conventional interval extension leads to the interval equation  

 [a][x] – [b]=0 (8) 

which seems to be senseless because its left part represents an interval value, 
whereas the right part is the non-interval degenerated zero. Formally, when 
extending Eq. (7) one obtains not only interval on its left hand side, but interval 
zero on the right hand side. Generally, this interval zero cannot be degenerated 
interval [0,0]. 

Therefore, the concepts of “interval zero extension” and “interval zero” has 
been proposed in [13]. The operation of “interval zero extension” provides an 
“interval zero” in the right hand side of extended Eq. (8). Since “interval zero” is 
not a degenerated interval, such approach makes it possible to solve the problem of 
correct interval extension of Eq. (8). 

In conventional interval analysis, it is usually assumed that any interval 
containing zero may be considered as “interval zero”. Let us look to this problem 
from another point of view. Without loss of generality, we can define the 
degenerated (usual) zero as the result of operation a-a, where a is any real valued 
number or variable. Hence, in a similar way we can define an “interval zero” as the 
result of operation [a]−[a], where [a] is an interval. It is easy to see that for any 

interval [a] we get [ ] [ ] [ ] [ ]aaaaaaaaaaaa −−−=−−=− ),(,,, . Therefore, in any 
case the result of interval subtraction [a]-[a], is an interval centered around 0. Thus, 
if we want to treat a result of subtraction of two identical intervals as “interval 
zero”, then the most general definition of such “zero” will be “interval zero is an 
interval symmetrical with respect to 0”. It must be emphasized that introduced 
definition says nothing about the width of “interval zero”. 

Thus, when extending Eq. (8) with previously unknown values of variables in 
the left hand side, only what we can say about the right hand side is that it should 
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be an interval symmetrical with respect to 0 with not defined width. Hence, as the 
result of interval extension of Eq. (8) in general case we get  

 [ ]a,a x,x b,b y, y     ⋅ − = −        (9) 

In fact, the right hand side of Eq. (9) is some interval centered around zero, 
which can be treated as interval extension of the right hand side of Eq. (8), i.e., as 
an interval extension of 0. The value of y  in Eq. (9) is not yet defined since the 

values of x , x  are also not defined. 
For positive interval values we get  

 
,

.

a x b y

a x b y

 ⋅ − = −


⋅ − =
 (10) 

From Eq. (10) we obtain only one linear equation with two unknown variables 

x  and x :  

 0ax b ax b− + − =  (11) 

If there are some constraints on the values of unknown variables x  and x , then 
Eq. (11) with these constraints may be considered as the so-called Constraint 
Satisfaction Problem (CSP) [16] and its interval solution may be obtained. The first 

constraint on the variables x  and x  is a solution of Eq. (11) assuming x= x . In 

this degenerated case we get the solution of Eq. (11) as 
a+a

b+b
=xm . It is seen that 

mx  is the upper bound for x  and the lower bound for x . The natural low bound 

for x  and upper bound for x  may be defined using basic definitions of interval 

arithmetic (6) as x=
a

b
, 

a

b
x = . Thus, we have [ ]x = , m

b
x

a

 
  

 and 

,m

b
x x

a

 
  =   

 
. These intervals can be narrowed taking into account Eq. (11), 

which in the spirit of CSP is treated as a constraint. 
From (11) we get: 

 , m

b+b ax b
x = x x ,

a a

 − ∈  
 

, , m

b+b ax b
x = x ,x

a a

−  ∈   
m

b
x ,x

a

 ∈   
  (12) 
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 Obviously, when x  is maximal, i.e., 
b

x =
a

, we get the minimal value of x , i.e., 

min 2

b+b ab
x =

a a
− . Similarly, from (12) we get the maximal value of x , i.e., 

max 2

b+b a b
x =

a a

⋅− . Since it is possible that minx <
a

b
 and max

b
x

a
> , we get the 

following interval solution:  

 [ ] max

b+b
x = x ,

a+a

 
 
 

, min
b+b

x = ,x
a+a

 
    

 
,  (13) 

where max 2max
b b+b ab

x = ,
a a a

 
− 

 
, min 2min

b b+b a b
x = ,

a a a

 ⋅− 
 

 

Expressions (13) define all possible solutions of Eq. (9). The values of minx , 

maxx  constitute the interval which produces the widest interval zero after 

substitution of them in Eq. (9). In other words, the maximum interval solution's 

width maxw = minx – maxx  corresponds to the maximum value of y : max

ab
y = b

a
− .  

Substitution of degenerated solution mx = x = x  in Eq. (9) produces the minimum 

value of y : min

ab ab
y =

a+a

−
. 

Thus, the formal interval solution (13) factually represents the continuous set of 
nested interval solutions of Eq. (9). It is shown in [13] that this set of interval 
solutions can be naturally interpreted as a fuzzy number. We can see that values of 
y  characterize the closeness of right hand side of Eq. (9) to the degenerated zero 

and minimum value miny  is defined exclusively by interval parameters [a] and [b]. 

Hence, the values of y  may be considered, in a certain sense, as a measure of 
interval solution's uncertainty caused by the initial uncertainty of Eq. (9). 

Therefore we introduce  

 
minmax

min1
yy

yy
=α

−
−−  (14) 

which may be treated as a certainty degree of interval solution of Eq. (9). We can 
see that α  rises from 0 to 1 with decreasing of interval's width from maximum 
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value to 0, i.e., with increasing of solution's certainty. Consequently, the values of 
α  may be treated as labels of α -cuts representing some fuzzy solution of Eq.  (9). 
Finally, the solution is obtained in form of triangular fuzzy number  

 minmax

b+b
x= x , ,x

a+a

 
 
 

%  (15) 

The resulting fuzzy solution can be reduced to the interval one using well 
known defuzzification procedures. In our case, defuzzified left and right 
boundaries of the solution can be represented as  

 

∫

∫
1

0

1

)

dα

dα(αx

=x o
def , 

∫

∫
1

0

1

)

dα

dα(αx

=x o
def  (16) 

For example, in the case of [a], [b]>0, in [12, 13] from (10), (14) and (16) the 
following expressions have been obtained:  

 
a

yy

a

b
=xdef 2

minmax −− , 
a

y+y
+

a

b
=xdef

2
minmax  (17) 

On the other hand, we can treat it as an approximate solution of the initial 
interval equation (8), which in turn can be formally presented in the algebraically 
equivalent form of interval division [x]=[b]/[a]. Therefore, the solution (17) can be 
formally treated as the result of modified interval division. Hereinafter, such 
interval solutions can be treated as the results of modified interval division. 

It is shown in [12, 13] that proposed method provides a considerable reducing 
of resulting interval's length in comparison with that obtained using conventional 
interval arithmetic rules. 

2. Solving interval linear systems using „interval extended zero” 
method 

Interval Gaussian elimination algorithm was used to solve Eq. (1). It can be 
presented as follows: 
a) forward substitution: 

 [ ] [ ]/ ,ji ji ii jk jk ji ikm = a a a = a m a         − ⋅           (18) 
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 [ ]j j ji ib = b m b     − ⋅       (19) 

where i := 1, 2,...n, j:=i+1, ...,n, k:=i,...n, [ ]0 iia∉  

b) backward substitution: 

 
1

[ ]
j n

ij j
j

s a x
=

=

   = ⋅   ∑  (20) 

 [ ] [ ] [ ]
[ ]
i

i
ii

b s
x

a

−
=    (21) 

where i := 1, 2,...n, [ ]0 iia∉ . 

Two implementations of the interval Gaussian algorithm have been developed. 
The modified interval Gaussian elimination algorithm (MGEA) with the use of the 
“interval extended zero” method and the usual Gaussian elimination algorithm 
(UGEA) with the use of the classic interval division operation. In the 
implementation of MGEA, all division operations in (18) and (21) were replaced 
with modified interval division defined in the previous Section.  

Multimedia SSE extensions [15] were used for implementing both MGEA and 
UGEA. These processor extensions were designed by Intel to improve the 
efficiency of the computations. They contain registers that can store integer and 
floating point numbers and all operations on them can be performed in parallel.  

The potential of multimedia extensions has been quickly recognized by interval 
community. Since intervals are stored in the memory as two floating point numbers 
(usually double precision), SSE extensions seem to be a very good solution to 
increase the efficiency of interval computations. Although first experiments with 
SSE extensions conducted by von Gudenberg [17] were not enthusiastic, Lambov 
[18] and Goualard [19], proved that SSE extensions can increase the performance 
of interval computations.  

We have tested our implementations using few examples of randomly generated 
interval matrices and vectors on AMD Dual-Core Opteron 2.2 GHz machine. Three 
well known and often used within interval community libraries were taken for 
comparison with our method: RealLib [20], Profil/BIAS [21] and Boost [22]. 
RealLib is used mostly for real numbers, but it also contains module for interval 
arithmetic. Similar to our approach, RealLib is implemented with the use of 
multimedia SSE extensions. Boost is a library for performing fast calculations on 
real numbers and intervals. Profil/BIAS is designed strictly for interval arithmetic. 
All these libraries are implemented with the use of classic interval division 
operation (6), and for all of them usual Gauss elimination algorithm have been 
implemented.  
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To estimate the quality of obtained results, we provide the special relative index 
of uncertainty, RIU. It may serve as the quantitative measure of the excess width 
effect. It was calculated on resulting vectors as a maximal value from all elements  

 
( ) ( )( )

%100
,max

= ⋅−−

m

mm

x

xxxx
RIU  (22) 

where ( ) 2/xxxm += . RIU was calculated as a maximum value obtained on the 

elements of the interval solution vectors. 
Table 1 presents the results obtained for 3 randomly generated interval matrices 

and vectors (containing 2000, 4000 and 6000 rows). The MGEA column contains 
results obtained using modified Gaussian elimination algorithm based on the 
modified interval division, UGEA column contains results obtained using usual 
Gaussian elimination algorithm with the use of classic interval division (6). Next 
three columns contain results obtained using RealLib (RealLib), Profil/BIAS 
(BIAS) and Boost (Boost) libraries respectively. Because RIU values were equal for 
RealLib, Profil/BIAS and Boost libraries, there is only one column containing RIU 
values for all of them. 

Table 1 

Calculations time and RIU values for interval Gaussian algorithm 

N 
MGEA UGEA RealLib BIAS Boost 

RIU,% Time, s RIU,% Time, s RIU,% Time, s Time, s Time, s 

2000 14.475 103.259 29.234 103.382 29.234 141.710 446.958 413.571 

4000 14.218 1852.325 29.237 1851.594 29.237 3321.393 6470.465 6559.811 

6000 14.287 8177.590 29.248 8190.385 29.248 16621.638 27870.882 24160.457 

 
Let us first analyze the RIU values. All three libraries (RealLib, Profil/BIAS and 

Boost) are implemented with the use of the classic interval division, just as our 
UGEA implementation. RIU values for all of them are equal (RIU values calculated 
for intervals in the input matrices and vectors were equal to 10%). MGEA 
implementation, using “interval extended zero”, method provide much better 
results: intervals were more than 50% narrower than ones obtained using classic 
interval division in all cases.  

Obtained calculation times confirm the efficiency of our implementation. 
RealLib library was two times slower for biggest matrix, whereas both Profil/BIAS 
and Boost libraries were more than three times slower than MGEA and UGEA 
implementations.  

We can conclude that MGEA and UGEA implementations are practically 
equally effective. This proves, that the “interval extended zero” method does not 
affect the speed of the interval Gaussian elimination algorithm. 
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Conclusions 

A new approach to solve linear interval equation systems based on the concepts 
of “interval extended zero” method using multimedia SSE extensions is presented. 
It is shown that this method can be naturally treated as a modified interval division 
and used in practical applications. This method not only allows us to reduce the 
undesirable excess width effect, but also perform fast interval computations using 
the multimedia SSE extensions. Some examples based of randomly generated 
interval matrices and vectors were used to prove the efficiency of our 
implementation in solving interval linear systems. The computations using our 
algorithms MGEA and UGEA are considerably faster than those of popular  
RealLib, Profil/BIAS and Boost libraries. Furthermore, the “interval extended 
zero” method does not affect the speed of the calculations. Both MGEA and UGEA 
are equally effective. 
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