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Abstract. In the paper mathematical description of Discandims Galerkin Method (DGM)
used in the theory of thermoelasticity is presen@dplacement form of governing equa-
tions is introduced as the base of mathematicaletno&pace discretization methodology
for discontinuous finite element method is showed.

I ntroduction

DGM is in fact similar to classical FEM (Finite Bbent Method). It makes use
of the same function space, but continuity at tleenent boundaries is relaxed.
It was first introduced by Reed and Hill [1] in I®Tor the solution of nuclear
transport equation. Cockburn [2, 3] has restored topularity of DGM
at the beginning of this century. The main ideshefmethod is that the field varia-
ble, its derivatives or even both of them are ater®d discontinuous across the
element boundaries. From this point of view DGMIlues both the FEM and
FDM (Finite Difference Method) thus it has advams@f both of them. DGM is
especially useful for computational dynamics andtheansfer. Because of the
locality of the discontinuous approximation, these&o need to build global matrix
and thus this reduces the demand of RAM. The infieeof the boundary
conditions is propagated gradually through the meBIGM is currently widely
discussed in the literature particularly in relatido convection-dominated
phenomena. Application of this method to solvingrthoelasticity problems is not
so popular, because of disadvantages of DGM adedciaith such type
of equations. The method doesn't handle secondr odderential equations
for steady-state but it is not impossible to sdlvem using appropriate methodo-
logy.

Changes in temperatures cause thermal effects teriala. Some of these ef-
fects are thermal stress, strain and deformatibarmal deformation simply means
as the temperature of material increases the rahteitl expand. Of course if the
temperature decreases the material will shrink.
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1. Mathematical description of the problem
Lets consider two-dimensional rigid bo@y (Fig. 1) limited by the boundary

0Q. The body is constrained on the fragment of thendary because the equilibri-
um has to be maintained. The temperature of thg isokhown.
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Fig. 1. Thermal effects in the two-dimensional d¢oained rigid body

Displacement equations of linear thermoelastiaigyaritten in following form

0%u 9%u 0% oxv _ . oT
fi—m+h_—=Z+f t1 = Ta—
ox oy 0yox oxoy 0x 1)
Fu, Pu v v oT
Zoyax  Coxay  Cox® toy? Yoy

whereu, v [m] - are x and y components of the displacemeatar respectively,

T [K] is known temperature of the considered bad{Kk] is linear coefficient of
the thermal expansion arg f,, f3, f4 are constants depending on Young modulus
E [N/m?] and Poisson's ratio [-]. Values of these constants differ for the estaf
plane stress and plane strain in the way show#tkitable below.

Table 1
Values of the constants of elasticity for plane stressand plane strain

Constant of elasticity Plane stress Plane strain

. E E@-v)
1-v? 1+v)a-2v)

f2 Ev —EV
1-v? 1+v)i-2v)

fa 7E 7E
2(1+ V) 2(1+ V)

fa f,+f, f, +2f,
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2. Discontinuous for mulation

DGM is local, so the considerations are carriedatuihe level of a single finite
element. Rigid body showed in Figure 1 is triangedaand each triangle from the
mesh has its own boundary with unique nodes (BigA&ive element surrounded
by its nearest neighbours is only needed to perfmatoulations. There is no need
to aggregate all elements in the huge stiffnessixnabd then solve set of thou-
sands equations.

neighbour III

neighbour [

three nodes
have the same
coordinates

Fig. 2. Active element with its three neighboumnicstandard DG stencil

DG doesn’t handle second order differential terthas all of the terms on the
left side of (1) have to be rewritten with use dfléional variables. One can intro-
duce four new variables (degrees of freedom) ieto($). These variables are in
fact spatial derivatives of displacemerdndv:

(u) _OU () _ Ou

Qx _&! qy _a_y (2)
(v) _ OV (v) _ OV
qx == Oy’ =—
ox 7 oy

Substituting new variables into (1) first orderfeliential equations are obtained

W  gqW v) agl¥)
00 T g 00 g W 0T
0x oy oy 0x 0x 3)
W  ggW v g
£ 0 g Ty g 00, K p 0T
ay 0x ox ay oy

Equations (3)-(4) are supplemented by Dirichlet Bledmann boundary condi-
tions



238 E. Wegrzyn-Skrzypczak, T. Skrzypczak

x,y)DaQ:u:ub,v:vb %)
(y)oe:q =qf), ol =ql), o’ =qf), ol =qf)

Finally the set of six basic equations is builthagix unknownsq)((“), qgu), )(("),
q§,"), u, v. This is of course serious drawback of the methd,fortunately four
spatial derivatives can be directly used to cateutdrain tensoff, .

The weighted residual method [4] is used for eaqumsti(2)-(3). Multiplying
them by the trial functiow and integrating over eleme@f® one can write:

J.wqX av = J.w av, J.wqy av = ‘[w—dv

(5)
wqX Jav = w?Y av, wq Vav = w— av
J.e QJ(;) ox J. g J. oy
W gl v gqW¥
[ 6,20 g, Ty g 9 p B oy = [ wt,a oy
o) 0X oy oy 0X te) 0X
Q Q (6)

(u) agW (v)
L L ML Y qV av = J.vvf4a—dv
o) oy ox ox (o)
Q Q
Exact solutionq)((”), qg,”), q)(("), qg,v), u, v is approximated by functionq)((‘ﬁ]),

q&,‘]), q)((‘{]), q%), Un, Vh. FOr example the approximation qﬁ“) andu is defined as

follows:
N
a => gl (7)
=1
N
u, = Z P, (8)

whereN is number of nodes in the elemedt, is arbitrary chosepth approxima-

tion function (i.e. shape function).
Inserting approximations (7)-(8) into first equatifrom (5) and integrating
term on its right side by parts one can obtain

qumdv I —u,dVv + I(\)/vnxﬁhds 9)
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Other equations from (5) are written analogoustyudions (6) have to be rear-
ranged in the similar way. Let's do this with respm the first equation. First de-
rivative term from it has to be integrated by parts

(u)
j £ 9% |y = j £ W Lay + jflwnxqiz)ds (10)
(e) 0x 00X (e)
Q Q 0Q

where ny, ny, are components of vector outward normal to thenbaty of

active element (Fig. 2)(“1%) and G, are numerical fluxes which can be variously

defined [5]. In this paper LDG (Local Discontinuo@slerkin) central fluxes were
used:

ay, =%(u; +u,§) (11)
) =~ 0l + o) culniur +nr) (12)

where “+" and “-" are values taken from active etarn(+) or its neighbours (-),
Ci is the constant affecting convergence ratio ofwation process.
Substituting (11) into (9) following equation istaimed

Wy —_ [ OW (. _
WQ/dV = —u,dv+ | wn,—=lu, +u, [ds (23)
Q'L " Q'L 0x ag!(e) 2
Finally the equation above is rewritten in follogiform
qu&ﬂ)dv + I a—Wuth —lnX Iwu;dszlnX Iwnxu,jds (14)
o) g 9X 2 780 20
The term (10) is rearranged analogously with ustugf(12)

o9\ e oW
j)w{fl ooV = jfl&qxhdv+

Q(e Q(e)

+ j) flwnx{% (q>(<Lrjm)+ + q%)_)_cll(n;ur: + n;ur:)}ds

aQle

(15)

There are four derivative terms in the first equatirom (6). Each of them has
to be rewritten in the same way leading to theti@mtashowed below
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(16)

Finally the set of six equations is built. Fourtikém look like (14), two of them
have the form of (16). Trial functiow is taken as shape functign, thus forN

nodes in the element one can write

o=(2....4)

Integral terms are showed in matrix form
M 0 0 0 D,
0 M 0 0 D,
0 0 M 0 0
0 0 0 M 0
-f,D, -f,D, -f,D, -f,D, -sV
-f,0, -f,b, -f,D, -fD, -S,
0 0 0 0 B,
0 0 0 0 B,

| o 0 0 0

1o 0 0 0 0
-fB, -fB, -fB, -fB, -s¥
-f,B, -fB, -fB, -fB, -S,

0
0
DX
Dy
-S
_dl

P <
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0
0
B
B
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X
y
S

y

)

X

O O O o

where successive matrices are in fact integralsilzatd as follows:

M=

j O dV

Q(E)

(17)

(18)

(19)
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D, = j(aq’jqﬂdv B, B,=>n, [007ds (20)
glo\ OX 2 00
Dyzj(am}ﬁdv B, ByzinyjmmHm (21)
g\ 0y 2 780
s =y (fn2 + £02) [@@Tds 22)
aqle)
s@ =c,(f;n2 + f,n )jcquds (23)
aqte)
S, =Cy(f, + fo)nn, j DD ds (24)
aQ(e)
H =-fa j (‘M’jqﬁdw fa j ®O'Tds (25)
OX ale
H, = QUI(MjQWﬁV+Qaj¢¢WdS (26)
Q) aqle)

The matrices (18) can be combined to yield thefalhg resultant matrix
KU=F (27)

whereK is the stiffness matrix) is the vector contains unknowns alRds the
right hand side vector.

The computational procedure is iterative elemenelgynent solution. Bounda-
ry conditions are gradually propagated into the dionduring this process. The
calculations start with an element located at thenblary and progressively sweep
through the region. This is repeated until diffexemetween results from previous

and current iteration is smaller thafi.e.s = 109). Obtainedq&”), q(y“), q)(("), qﬁ,"’

can be used to calculate components of the steasot. Further they can be used
to compute components of the stress tensor.

Conclusions

Presented mathematical and discontinuous numeriodkl of the planar ther-
moelasticity problem shows methodology of Discambins Galerkin Method for
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solving second order partial differential equatidBs the basis of these considera-
tions a computer program can be easily constructed.
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