
Scientific Research of the Institute of Mathematics and Computer Science 

FRACTIONAL EULER-LAGRANGE EQUATIONS -  
NUMERICAL SOLUTIONS AND APPLICATIONS  

OF REFLECTION OPERATOR 

Tomasz Blaszczyk1, Mariusz Ciesielski2 

1Institute of Mathematics, Czestochowa University of Technology, Poland  
2Institute of Computer and Information Sciences, Czestochowa University of Technology, Poland 

tomasz.blaszczyk@im.pcz.pl, mariusz.ciesielski@icis.pcz.pl  

Abstract. In this work numerical solutions of fractional Euler-Lagrange equations describ-
ing free motion are considered. This type of equations contains a composition of left and 
right fractional derivatives. A reflection operator is applied to obtain relations between the 
Euler-Lagrange equations. In addition we verify the dependence between the respective 
numerical schemes using the same operator. In the final part of paper the examples of the 
numerical solutions are shown. 

Introduction 

The paper is devoted to the issue of numerical analysis of ordinary differential 
equations containing a composition of left and right fractional derivatives. This 
type of equations is obtained when the minimum action principle and fractional 
integration by parts rule are applied. There are many authors who considered 
a fractional Euler-Lagrange problem. Riewe in [1] investigated nonconservative 
Lagrangian and Hamiltonian mechanics and for those cases formulated a version of 
the Euler-Lagrange equations. On the other hand, Agrawal in [2-4] considered dif-
ferent types of variational problems, involving Riemann-Liouville, Caputo and 
Riesz fractional derivatives, respectively and he derived the corresponding Euler-
-Lagrange equations and discussed possibilities for describing boundary conditions 
in each case. Klimek in [5] proposed the sequential Lagrangian and Hamiltonian 
approaches to this problem. Other applications of fractional variational principles 
are presented in [6, 7]. The important problem is how to find the solutions of the 
fractional Euler-Lagrange equations. Using the fixed point theorems [8], one can 
obtain analytical results represented by a series of alternately left and right frac-
tional integrals. Klimek in [9] showed an application of the Mellin transform for 
this problem, but this solution is represented by a series of special functions and 
therefore is difficult to use in practical calculations. 

In references [10, 11] a numerical approach to solution of ordinary differential 
equations with left and right fractional derivatives is proposed. In our work, we 
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shall present numerical solutions of the Euler-Lagrange equations and equations 
with the reflection operator. 

1. Formulation of the problem 

We consider the following fractional differential equations of order α ∈  (0, 1) 
(known in the literature as the fractional Euler-Lagrange equations [2-5, 8-11]) 
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where operators Dα are the left and right fractional derivatives in Riemann-
Liouville (3) and Caputo (4) senses defined as [12] 
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and operators I α are fractional integrals of order α defined in [12] 
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The following relations between both definitions (3) and (4) take place [12] 
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Equations (1) and (2) are supplemented by the adequate boundary conditions 

 ( ) ( ) ba FbfFaf == ,  (7) 

In this work we use the reflection operator Q on the interval ],[ bat ∈  

 ( )( ) ( )tbaftfQ −+=  (8) 
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This operator acts on the fractional differential operators as follows [13] 
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2. Numerical solution 

In order to develop a discrete form of equations (1) and (2), the homogenous 
grid of nodes is introduced 

 tittbtttttta iNii ∆+==<<<<<<<= + 01210 ,��  (10) 

A value of function f at the moment of time ti is denoted as fi = f (ti).  

2.1. Discrete form of equation (1) 

At first we determine numerical schemes for both fractional operators occurring 
in eq. (1). The value of derivative (6) (internal operator) at the moment of time ti 
can be approximated as [14] 
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where 
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Substituting ( ) ( )( )tfDtg a
α
+=  in eq. (1), we can directly discretise the composition 

of operators 
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where 
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Next, substituting the discrete form of derivative (11) into (13), the following form 
is obtained  
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In order to solve eq. (1) numerically with boundary conditions (7), it is necessary to 
solve the following system of algebraic equations  
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2.2. Discrete form of equation (2) 

This method is similar to the previous case. At the beginning we discretise the 

operator ( )( )tfDb
α
−  at time ti as 
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where 
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and next  
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The discrete form for the operators composition in eq. (2) we can write (after sub-
stitution the discrete form of (17) into (19)) as follows 
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Similar to the previous equation, it is necessary to solve the following system of 
equations  
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2.3. Numerical solutions of equations with the reflection operator 

In this subsection we present an application of reflection operator Q (8) acting 
on eq. (1) 
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Taking into account relations (9), one can write eq. (1) in the following form 
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Now, we show identity of equations (23) and (24) using numerical approach. 
For this purpose we present numerical solutions which are determined using 
schemes (16) and (22). Let us note that operator Q acts as follows 
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After changing the order of summation we can write the above formula as 
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Hence, we change in scheme (21) only term fk by fN−k and we obtain  
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Also, in both equations (23) and (24) the values of boundary conditions must be 
replaced: f(a) = Fb and f(b) = Fa (in numerical approach: f0 = Fb and fN = Fa). 

Analysing the values of weight at fN−k in (27) and (28), one can note that they 
are equal and both schemes are equivalent. One can affirm that the following rela-
tions between coefficients occurr 

 ( ) ( ) ( ) ( )jNiNvjivjNiNwjiw −−=−−= ,,,,, 1212  (29) 

In a similar way one can obtain other schemes for equations in which other compo-
sitions of fractional differential operators appear. 

3. Examples of computations 

In this section the numerical results of calculations are presented. In presented 
solutions of equations the following parameters have been assumed: a = 0, b = 1, 
α = {0.1, 0.3, 0.5, 0.7, 0.9, 0.999}, N = 1000. The values of boundary conditions 
are following: Fa = 0, Fb = 1 for eq. (1) and Fa = 1, Fb = 0 for eq. (2). 

In Figure 1 the solutions of equations (1) and (2) for different values of the pa-
rameter α are presented. One can see that both solutions are symmetrical. 

 
 

 
Fig. 1. Solutions of eq. (1) (left-side) and eq. (2) (right-side) 

Conclusions 

In this work the fractional Euler-Lagrange equations were considered. This type 
of equation includes a composition of the left and the right fractional derivatives. 
The analytical solutions of these equations are difficult to apply in practical calcu-
lations. Numerical solution is an alternative approach to the analytical one. In this 
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study the numerical schemes were presented to obtain the solution for two cases of 
the fractional Euler-Lagrange equations. The considered equations are related via 
the reflection operator. This relationship was also proved for numerical schemes. 
Analysing solutions presented in Figure 1 we observe that the solutions of equation 
(1) are a symmetrical reflection of the solutions of equation (2). 
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