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Abstract. Two types of one-term nonlinear fractional differential equations are considered 
and the existence of solutions in the space of  continuous, positive and bounded below 
functions is proved. We transform an  equation containing  the left- or right-sided Caputo 
derivative into  a fixed point condition and apply the Banach theorem and extended Bielec-
ki method of equivalent norms.  

Introduction  

Fractional calculus involves derivatives and integrals of non-integer order in 
addition to the classical ones of integer-order. Contrary to the traditional name,  the 
order of operators can be a fraction, an arbitrary real or complex number. Such 
operators are  now an integral part of mathematical modelling methods in many 
areas of mechanics, physics, control theory, bioengineering, economics and chem-
istry (see monographs [1-8] and the references therein).  In the applications of frac-
tional calculus, a new class of integral-differential equations has been developed. 
They include integrals and derivatives of non-integer order and in general the high-
er order equations contain compositions of fractional derivatives. Solutions have 
been studied for two decades [6-16] and the methods of solving include fixed point 
theorems, integral transform methods as well as operational methods based on 
properties of new classes of special functions. We shall study here one-term frac-
tional differential equations (FDE) which means the differential part includes only 
one fractional derivative which in the considered case is a Caputo left- or right-
sided one. In the paper we apply the Bielecki method of equivalent norms [17] 
(compare also [18, 19]) as a main tool of proving the existence-uniqueness of the 
solutions and extend it to the FDE with a right-sided operator. 

The paper is organized as follows. In the next section we recall the definitions 
and some properties of fractional operators. We also introduce the family of func-
tion spaces of continuous and bounded below functions, determined in an arbitrary 
finite interval. On these spaces two types of norms are constructed following  Bie-
lecki’s ideas  [17]. They depend on a scaling positive parameter and on a non-
negative continuous function. Being equivalent to the standard supremum norm, 
they yield the same convergent sequences and the same limits. In Section 2 we 
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consider two types of nonlinear integral equations:  containing the left-sided inte-
gral (as is standard in the Volterra equations theory) or the right-sided one. Using 
the norms introduced in Section 1 and the induced metrics we prove the existence 
and uniqueness of the solutions for both types of equations. The main results of the 
paper are included in Section 3, where we transform certain nonlinear FDE into 
equivalent integral ones. Next, we apply the results of Section 2  to construct the 
solutions generated by the respective stationary functions of Caputo derivatives.  

1. Preliminaries 

We  recall here  some of the operators of fractional calculus. We start with inte-
grals defined for functions determined on finite interval [8, 20]. 
 

Definition 1.1 

Riemann-Liouville integrals   of order α, denoted as  )(0 tfI α
+ , )(tfIb

α
− ,  are  given  

by the formulas below for  0)Re( >α : 
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The first of the above integrals is called the left-sided Riemann-Liouville inte-
gral and the next, the right-sided integral respectively. Having defined fractional 
integrals, we can construct fractional derivatives. In our paper we shall consider 
one-term fractional differential equations with Caputo derivatives given in the fol-
lowing definition.  
 

Definition 1.2 

Caputo derivatives  of order α, denoted as  α
+0Dc  and α

−b
c D  for ),1()Re( nn −∈α ,  

look as follows: 
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Similar to the integrals defined in (1), (2) we have the left-sided derivative (3) 
and the right-sided derivative (4). 
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An extensive review of the properties and applications of the presented operators 
can be found in monographs [6-8, 20]. We  only quote  the composition rules for 
integrals and derivatives. We shall apply them  further in the transformation of the 
fractional differential equations discussed in our paper. 
 

Property 1.3 
The following composition rules hold for any   ],0[ bt ∈ : 

 )()(00 tftfIDc =++
αα  (5) 

 )()( tftfID bb
c =−−

αα , (6) 

provided function f  is continuous i.e. ],0[ bCf ∈ . 
Our aim is to study  nonlinear FDE  on a finite interval in the form of 

 rc txtxD )()(0 ⋅=+ λα  (7) 

 r
b

c txtxD )()( ⋅=− λα  (8) 

and to find their positive solutions belonging to the function space given in the 
definition below. 
 

Definition 1.4 
Function space ],0[,0

bC gm  is a subspace of the space of continuous functions de-

termined by the condition    
]},0[0)()(];,0[{],0[ 0,0

bttgmtxbCxbC gm ∈∀>≥∈= . 

Let us note that the above space, endowed with a metric induced by the supremum 
norm, is a metric and complete space. 
The nonlinear terms on the right-hand side of equations (7), (8) fulfill the following 
Lipschitz-type condition.  
 

Lemma 1.5 
Let  ],0[, ,0

bCyx gm∈  be a pair of arbitrary functions. Then  the following inequali-

ty is valid for any ],0[ bt ∈  
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Proof:  we observe that  for any )1,0(∈r  a pair of integer numbers exists such that 

 11 −− << lrn         Nnl ∈,            (11) 

Let us assume that  )()( tytx ≥  for given  ],0[ bt ∈ . We shall prove inequality (9) 
in this case only as all the calculations are analogous when )()( tytx ≤ .    Starting 
from the left-hand side of (9) we obtain 
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where we applied the formula for partial sums of the geometric series. As functions 
x  and  y  belong to the  ],0[,0

bC gm   space,  we arrive at inequality (9): 
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Now, we consider the case when exponent  r  is negative. Similar to the first part of 
our calculations we assume  )()( tytx ≥ , )0,1(−∈r  and  r  fulfills the condition 

 11 −− <−< lrn      Nnl ∈, .        

Then we get 
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Remembering that  )()( 0 tgmtx ≥ , )()( 0 tgmty ≥ we arrive at  inequality (9) in the 
case of negative r: 

 ( ) rl

k

lrlklkl

rr

tgml

tytx

tytx

tytx
tytx −−

=

−−

−
≤

−
≤−

∑
1

0
1

0

/)(/)( )(

)()(

)()(

)()(
)()( . 

In his papers Bielecki introduced for Volterra integral equations a  family of 
norms equivalent to the supremum norm. Changing the norm of the considered 
function space, we are able to rewrite the Volterra integral equation as a fixed point 
condition of certain contractive mapping.  Following this method, we construct on 
the space of positive continuous and bounded below functions, two families of 
norms determined by a scaling parameter and a  non-negative function connected 
to the problem.  
 

Definition 1.6 
We introduce two new norms on function space  ],0[,0

bC gm  
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where G  is an arbitrary continuous,  non-negative function and κ is a positive real 
number. 
It is easy to check that both norms (12), (13) are equivalent to the supremum norm 
on the ],0[,0

bC gm  space. 
Property 1.7 
Norms  −

⋅
,κ and  +

⋅
,κ are equivalent to the supremum norm for any +∈ Rκ  and 

function G obeying the conditions of Definition 1.6. 
Proof: the equivalence is a result of the following inequalities 
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valid for any function  ],0[,0
bCx gm∈ .   
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2. Bielecki method for left- and right-sided integral equation  
on the ],0[,0

bC gm  space 

In this section we shall consider two integral equations 
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where 1<r , kernel  K is a non-negative, continuous function determined on set 

],0[],0[ bb × and function ],0[,0 0
bC gm∈ϕ . The first of the above equations was 

also discussed in [21] on the space of functions continuous and bounded.  
We shall prove the existence and uniqueness of the solution to the above equations 
in the ],0[,0

bC gm  space. To this aim we apply the Banach theorem on a fixed 

point, reformulating the integral equations as fixed point conditions for the map-
pings defined below  
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proved  in the lemma below and in Lemma 2.3. 
 

Lemma 2.1 
Mapping T, defined in formula (16) with kernel K a continuous and non-negative 
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Proof: Let  ],0[, ,0
bCyx gm∈  be a pair of arbitrary continuous functions bounded 

below by positive function gm0 . The distance between their images,  measured 
using the metric induced by norm (12) with G given in (18), fulfills the following 
inequalities 
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Thus, we conclude that mapping T obeys the following condition for any pair of 
functions ],0[, ,0

bCyx gm∈  

 −− −≤−
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1
κκ κ
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and for any  positive value of parameter κ. Assuming )1,0(1 ∈−κ ,  we note that this 

mapping is a contraction on the ( ],0[,0
bC gm ,  −

⋅
,κ )  space. 

Corollary 2.2 
Equation  
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where 1<r  and kernel  K is a non-negative, continuous   function determined on 

set ],0[],0[ bb × , has a unique solution in the ],0[,0
bC gm  space, provided  function 

],0[,0 0
bC gm∈ϕ .  
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Lemma 2.3 
Mapping  T , defined by formula (17) with kernel K  a non-negative, continuous   
function  on set ],0[],0[ bb × , is contractive on the ( ],0[,0

bC gm ,  +
⋅

,κ ) space when   

)1,0(1 ∈−κ  and ],0[,0 0
bC gm∈ϕ . 

Proof:  Let  ],0[, ,0
bCyx gm∈  be a pair of arbitrary continuous functions bounded 

below by positive function gm0 . Now the distance between their images xT  and 

yT  is measured using  the metric induced by norm (13) with function G given in 
(18). It  obeys the  relations 
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The above calculations imply the following inequality valid for any functions  
],0[, ,0

bCyx gm∈  and +∈ Rκ  
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We now assume  )1,0(1 ∈−κ    and conclude that mapping T  is a contraction in the   

],0[( ,0
bC gm , +

⋅
,κ ) space. 
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Corollary 2.4 
Equation  

∫ +=
b

t

r tdssxstKtx )()(),()( 0ϕ , 

where 1<r , kernel  K is a non-negative, continuous function determined on set 

],0[],0[ bb × , has a unique solution in the  ],0[,0
bC gm  space, provided function 

],0[,0 0
bC gm∈ϕ .  

Let us note that the proofs of Lemma 2.1 and 2.3 imply that assumption on the 
continuity of  kernels K  can be replaced by the assumption that they are integrable 
and bounded functions. We give this generalized result in the following lemma 
describing  the case of mapping T and T . 
 

Lemma 2.5 
(1) Mapping T, defined in formula (16) with kernel K a non-negative function, 
integrable with respect to its second argument  and bounded  on set  ],0[],0[ bb × ,  

is contractive on the  ( ],0[,0
bC gm , −

⋅
,κ  ) space when )1,0(1 ∈−κ , ],0[,0 0

bC gm∈ϕ  

and G is given in (18). 

(2) Mapping  ,T  defined in formula (17) with kernel K  a non-negative function, 
integrable with respect to its second argument and bounded  on set ],0[],0[ bb × , is 

contractive on the ( ],0[,0
bC gm , +

⋅
,κ ) space when   )1,0(1 ∈−κ , ],0[,0 0

bC gm∈ϕ  

and G  is given in (18). 

3. Main results 

We apply the existence and uniqueness results proved in the previous section for 
integral equations (14), (15) to investigate the existence of solution to fractional 
differential equations (7), (8).  The first step is the  transformation of these equa-
tions to the corresponding fixed point conditions. From the composition rules in 
Property 1.3, it follows that on the ],0[,0

bC gm  space equations (7), (8) are respec-

tively equivalent to the fractional integral equations given below 

 )()()( 0 ttxItx o
r ϕλ α +⋅= +      (21) 

 )()()( ttxItx o
r

b ϕλ α +⋅= − ,  (22) 

where functions 0ϕ  are stationary functions of the respective Caputo derivatives 

taken from the    ],0[,0
bC gm  space. Applying Definition  1.1   of the left- and right 
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-sided fractional  integrals we conclude that the above equations are identical to 
earlier considered equations (14), (15), where the kernel is given by formula 
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for equation (22), ],0[],0[),( bbst ×∈  . Let us note that they are non-negative,  
continuous functions on set  ],0[],0[ bb ×  when 1≥α  and 0≥λ . 
 

Proposition 3.1 
If 1≥α , 0≥λ  and )1,1(−∈r , then each stationary function  0ϕ of the left-sided 

Caputo derivative, fulfilling the conditions: 0)(00 =+ tDc ϕα and  ],0[,0 0
bC gm∈ϕ , 

generates a unique ],0[,0
bC gm  solution of fractional differential equation  

 rc txtxD )()(0 ⋅=+ λα . 

This solution is a limit of iterations of mapping T defined below defined below on 
the ],0[,0

bC gm  space: 

 ],0[)()(:)( ,0 0
bCyttyItTy gmo

r ∈+⋅= + ϕλ α  

ψk
k Tx )(lim ∞→= , 

where ],0[,0
bC gm∈ψ  arbitrary. 

Proof: as we have observed,  the above fractional differential equation on space 
],0[,0

bC gm  is equivalent to equation (14) with the  kernel described in (23). In ad-

dition each stationary function ],0[,0 0
bC gm∈ϕ  creates mapping T given in (16).  

Thus, the assumptions of Lemma 2.1 and Corollary 2.2 are fulfilled for each sta-
tionary function of the Caputo derivative from the ],0[,0

bC gm  space. Applying 

Corollary 2.2, we conclude that the considered FDE has a unique solution in this 
space generated by 0ϕ . According to  the Banach theorem it  is a limit of the itera-

tions of mapping (16) with kernel (23). 
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In the case of equation (15) we have an analogous result which is given below. As 
it is a straightforward corollary of Lemma 2.3 and Corollary 2.4 we omit the proof. 
 

Proposition 3.2 
If 1≥α , 0≥λ  and )1,1(−∈r , then each stationary function  0ϕ of the right-sided 

Caputo derivative, fulfilling the conditions: 0)(0 =− tDb
c ϕα and ],0[,0 0

bC gm∈ϕ , 

generates a unique ],0[,0
bC gm  solution of fractional differential equation  

 r
b

c txtxD )()( ⋅=− λα . 

This solution is a limit of iterations of mapping T defined below on the ],0[,0
bC gm  

space: 

 ],0[)()(:)( ,0
bCyttyItyT gmo

r
b ∈+⋅= − ϕλ α  

ψk
k Tx )(lim ∞→= , 

where ],0[,0
bC gm∈ψ  arbitrary. 

Final remarks 

In the paper we studied two types of nonlinear, one-term FDE in an arbitrary fi-
nite interval. We derived their solutions in the space of functions continuous, posi-
tive and bounded below by given function gm0 . To this aim we applied the ex-

tended version of the Bielecki method and explicitly constructed solutions generat-
ed by the stationary functions of the left- and right-sided Caputo derivative.  

Let us note that the scaling of  norms using  exponential functions, as in formu-
las (12), (13),  restricts our results to equations of fractional order 1≥α . In  further 
investigations we shall consider the case 0<α<1 using scaling via the Mittag-
-Leffler function which is a generalization of the exponential function. 

References 

[1] Metzler R.,  Klafter J., The restaurant at the end of the random walk: recent developments in the 
description of anomalous transport by fractional dynamics, J. Phys A 2004, 37,  R161-R208. 

[2] Agrawal O.P., Tenreiro-Machado J.A., Sabatier J. (Eds.), Fractional Derivatives and Their 
Application: Nonlinear Dynamics, 38, Springer-Verlag, Berlin 2004. 

[3] Hilfer R. (Ed.), Applications of Fractional Calclus in Physics, World Scientific, Singapore 
2000. 

[4] West B.J., Bologna M., Grigolini P., Physics of Fractional Operators, Springer-Verlag, Berlin 
2003. 



M. Klimek, M. Błasik 

 

102

[5] Magin R.L., Fractional Calculus in Bioengineering, Begell House Publisher, Redding 2006 
[6] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential 

Equations, Wiley and Sons, New York 1993. 
[7] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999. 
[8] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential 

Equations, Elsevier, Amsterdam 2006. 
[9] Michalski M.W., Derivatives of noninteger order and their applications, Dissertationes Mathe-

maticae CCCXXVIII, Institute of Mathematics, Polish Acad. Sci., Warsaw 1993. 
[10] Lakshmikantham V.,  Leela, S., Vasundhara Devi J., Theory of Fractional Dynamic Systems, 

Cambridge Scientific Publishers, Cambridge 2009. 
[11] Lakshmikantham V., Vasundhara Devi J., Theory of fractional differential equations in  

a Banach space, European J. Pure and Appl. Math. 2008, 1, 38-45. 
[12] Kilbas A.A., Trujillo J.J., Differential equation of fractional order: methods, results and prob-

lems. I, Appl. Anal. 2001, 78, 153-192. 
[13] Kilbas A.A., J.J. Trujillo J.J., Differential equation of fractional order: methods, results and 

problems, II, Appl. Anal. 2002, 81, 435-493. 
[14] Klimek  M., On Solutions of Linear Fractional Differential Equations of a Variational Type, 

The Publishing Office of the Czestochowa University of Technology, Czestochowa 2009. 
[15] Kilbas A.A., Rivero M., Rodriguez-Germá L.,  Trujillo J.J., α-analytic solutions of some linear 

fractional differential equations with variable coefficients, Appl. Math. Comp. 2007, 187, 239- 
-249. 

[16] Rivero M., Rodriguez-Germá L., Trujillo J.J., Linear fractional differential equations with 
variable coefficients,  Appl. Math. Lett. 2008, 21, 892-897. 

[17] Bielecki A., Une remarque sur la methode de Banach-Cacciopoli-Tikhonov dans la theorie des 
equations differentielles ordinaires, Bull. Acad. Polon. Sci. Cl. III - Vol. IV, 1956, 261-264. 

[18] Baleanu D.,  Mustafa O.G., On the global existence of solutions to a class of  fractional differ-
ential equations, Comp. Math. Appl. 2010, 59, 1835-1841. 

[19] El-Raheem Z.F.A., Modification of the application of a contraction mapping method on a class 
of fractional differential equation, Appl. Math. & Comput. 2003, 137, 371-374.  

[20] Samko S.G., Kilbas A.A., Marichev O.I., Fractional Integrals and Derivatives, Gordon  
& Breach, Amsterdam1993. 

[21] Bushell P.J., On a class of Volterra and Fredholm non-linear integral equations, Math. Proc.  
of the Cambridge Phil. Soc. 1976, 79, 329-335. 
 


