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Abstract. The damage evolution occurring in a set of eleménthe nodes of the support-
ing one- and two-dimensional lattices is analysétiiwthe stochastic Fibre Bundle Model
approach. The element-strength-thresholds are dfieosm a given probability distribution
and the set of elements is subjected to an extévadlthat is increased quasi-statically. If
an element fails, its load has to be transferrethéoother intact elements. We compare
avalanche statistics i.e. the number of damagetiesits for three different load transfer
protocols, namely the global, local and recenttyoiduced so-called Voronoi load transfer
rule. Our example system is an array of nanopillars

Introduction

The knowledge of fracture evolution up to globgbtire and its effective de-
scription are important for the analysis of thensfgort processes occurring in
heterogeneous media. From the theoretical pointev?, the understanding of the
complexity of the rupture process has advancedtaluke use of lattice models.
An example of great importance is the family oihster load models, especially
Fibre Bundle Models (FBM) [1-21]. In a static FB,set of fibres is located in
the nodes of the supporting lattice and the elersangth-thresholds are drawn
from a given probability distribution. After an etent has failed, its load has to be
transferred to the other intact elements. Two ex¢reases are: global load sharing
(GLS, also known as equal load sharing - ELS) -dla€l is equally shared by the
remaining elements and local load sharing (LLS)ly ¢he neighbouring elements
suffer from the increasing load.

In this work, apart from the aforementioned transtdes, we employ an ap-
proach based on Voronoi polygons - the extra Isaglgually redistributed among
the elements lying inside the Voronoi regions gatezt by a group of elements
destroyed within an interval of time taken to be thme step. We call this load
transfer rule Voronoi load sharing (VLS). This kimd load transfer not only
merges the GLS and LLS approach concepts but athaces supplemental ran-
domness to the model. It is because of the fac¢ttianumber of intact elements
inside of a particular Voronoi region is random.
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Voronoi polygons are one of the most fundamental aseful constructs de-
fined by irregular lattices [22]. For sét ={x,,X,,....xy} of N distinct points in

Q O R?, the Voronoi tessellation is the partition ©f into N polygons denoted
by AV,. EachAV, is defined as the set of points which are clogex, tthan to any

points in X . All of the Voronoi regions are convex polygons.Higure 1, an ex-
ample of Voronoi polygons is shown, in the casegqfare-shaped pillars.

W

Fig. 1. Voronoi polygons for set of square-shapédrp: white squares-intact pillars, black
squares-previously destroyed pillars and shadedrsgtjust damaged pillars

1. Load transfer modelling

Consider an array oN mechanically independent pillars located in thdeso
of the lattice. In this work we are concerned viitith one-dimensional lattices and
two-dimensional square lattices. To each pibkarwe assign a critical load (in the

sense of a strength-threshold‘){h which is randomly distributed according to
distribution P(g,,), i =12K ,N. When loado, applied on the pillar attaing},

the pillar crashes. In this work we employ unifodmtribution of pillar strengt’h-
thresholds with the probability and density funotio P(o,,)=0,,. p(o,)=1,
respectively. The strength-thresholds values aaeaifrom interval [0,1].

1.1. Loading of the system

Starting with all intact pillars, which correspontitsa zero load, we load the
system by growing external forde until the whole array of pillars collapses. This
external loadF is the control parameter of the model. The saqtiltdrs is loaded
in aquasi-static way. The system is uniformly loaded until the westkintact pil-
lar fails and the increase of the load stops. Attés failure, the actual load com-
ing from the crashed pillar is transferred to thieo intact pillars according to
a given transfer rule. The increased stress orinttaet pillars may give rise to
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another failures, after which the load transfemfrthe destroyed elements may
cause subsequent failuress. If the load transfer does not provoke furtheruisb
there is a stable configuration and external I¢achas to be increased until the
weakest remaining pillar crashes. The above demtrgyocedure is repeated till
the system completely fails. Once the stress onpiliar attains its strength-
threshold value, the pillar is instantaneously @mrelersibly damaged.

2. Appearance of avalanches and their evolution

The number of damaged pillars under an equal extéoad is called an ava-
lanche @), hence the avalanche is the number of destroitkaspbetween two
consecutive load increments. In other words, thelaameche is the number of
crashed pillars between one stable state and ttiestadble state.

We study the distribution of the avalanche sizegeaping during the entire
breakdown process. Calculations have been donthffee types of load transfer
rules, namely, GLS, VLS and LLS, including diffetemriants of the LLS model.
We realised simulations for two system siz8s= 400x 400 pillars and N =10*
pillars. These simulations are time consuming, egfig for large systems, thus
the statistics built up for a system of sike=10" pillars is better than that for its
bigger counterpart.

Let D(A) denote the number of avalanches of dizeFigures 2-4 illustrate the
avalanche size distribution on a single samplettier GLS, VLS and LLS rules,
respectively. The system consists Nf=400x  4pillars. As we can see, the
avalanche distribution for the GLS and VLS rulesésy similar.
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Fig. 2. Avalanche size distribution for GLS. Figiséased on single sample containing
N =400x% 400 pillars
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Fig. 3. Avalanche size distribution in 2D systemV&.S rule. Figure is based on single
sample containing\ = 400x 40@illars
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Fig. 4. Avalanche size distribution in 2D systemlfaS rule. Figure is based on single
sample containingN =400x  40illars

The distribution of avalanches for the GLS rulddais a universal power law:

D(A)OA™ )
where exponenta =5/2[3-5]. For the VLS rule, we obtained exponent value
a =11/4. The characteristic of the LLS avalanche distitiuis completely dif-
ferent. For small-size avalanches, the LLS appbréiats a power law distribution
with a much bigger value af = 4.2 [4].

Next, we consider the following quantities for ti&erent transfer rules:
— average number of avalanches
— mean critical stresses
— average size of catastrophic avalanche
The results, shown in Table 1 are based on 1000l&iions performed for a sys-
tem size ofN =10* pillars.
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The number of avalanches accounts for the numbéyaof increase steps till
the whole system is completely damaged. As we ean the biggest number of
steps of load increase occurs for both the GLS\Arfi rules. The damage process
for the LLS rule runs in @ much smaller number t@fps of load increase. With
respect to the variants of the LLS rule, it camb#ced that the bigger the number
of neighbours to which load is passed (from damamkats) the greater the num-
ber of avalanches.

Table 1

Statistics of damaging processfor GL S, VL Sand different variants of LLS. Results
are based on 1000 samples, each containing N = 10 000 pillars. Abbreviations: st. -
standard LLS, n - nearest neighbour, r - right neighbour, | - left neighbour

Average size
Loa?utlg,sfer nﬁ\r/:l;&elgr]if Mf;r; C;ri<t|i:a>lls’£lress <l\;ea>n:c<ri;ic>all<sAtre§s ;thr gs:]ei\(-:
avalanches c c fa c fa avalanche
(Ba)
GLS 3081.8 0.2507 0.5005 5009
2D VLS 3079.3 0.2505 0.4956 5054
st. 1839.8 0.1654 0.2102 7866
1n 1138.3 0.1070 0.1220 8771
2n 1206.0 0.1127 0.1297 8687
2p 3n 1876.4 0.1683 0.2157 7803
4n 1934.0 0.1727 0.2237 7720
Hs 5n 2060.9 0.1826 0.2423 7536
1r 1102.5 0.1036 0.1176 8812
1r 1l 1313.6 0.1220 0.1425 8563
b 1n 1118.2 0.1052 0.1196 8794
2n 1445.7 0.1333 0.1587 8397

We define two quantities of critical stress related
— initial number of pillarso, = F_./ N
— size of catastrophic avalanclg, =F_ /A,

where F, is the total critical load causing a complete kdeavn of the system.

The values of the critical stress for GLS and Vu&s are very similar. For these
transfer load rules, the system is able to sustaimuch bigger external load with
respect to the one corresponding to the LLS sch&heresults for variants of the
LLS scheme indicate that the average system strdngteases as the number of
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neighbours to which the load is passed grows. Are@se in the number of neigh-
bours to which the load is passed enables themystesustain a greater external
load. In general, one can say that the bigger tiraber of intact pillars which
receive the load from damaged pillars (transfedmetl is more dispersed), the
bigger the external load the system can suppodreef complete breakdown.
Critical load F, triggers a catastrophic avalanchg,, i.e. a final avalanche

breaking all the remaining pillars and causes arosaopic failure of the entire
system, so the final stage of the breakdown procHss average size of a cata-

strophic avalanchéA ) is reported in Table 1 and it is seen that for Gies

rule, the catastrophic avalanche starts when orageealmost half of the pillars is
destroyed. For the VLS rule, the mean size of thal fcatastrophic avalanche is
slightly bigger than for the GLS rule. In the caddhe LLS scheme the mean size
of the catastrophic avalanche is much bigger inpaoeon to the GLS and VLS
rules, so that the final avalanche for the LLS mubeurs at an earlier stage of the
breakdown process. Concerning the variants of i@ tule, we see that the big-
ger the number of neighbours to which the loadasspd, the smaller the mean
size of the catastrophic avalanche.

Figures 5-7 show the avalanche distribution for &5, VLS and LLS rules,
respectively. The results are based on 1000 simokton a system of size

N =10* pillars. Similarly to the results of the above lgsad single sample, the
avalanche distributions for the GLS and VLS rulelofv power law behaviour
with exponentsy =5/2 and a = 265 respectively.

The distribution of avalanches for the LLS rulelgg&a = 39 which means
that this load transfer procedure represents tlomgest way of system destruc-
tion.
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Fig. 5. Avalanche size distribution for GLS. Figiséased on 1000 samples, each
containing N =100x 100pillars



Avalanche statistics in transfer load models of\eng damage 27

107 ¢
<
100 s
‘o
105+ N
‘\
\'
104 A,Z(,S L
~
e,
D(4)
102
10
1 ‘ ‘ ‘ - | o c— ‘
1 2 5 10 20 A4 50 100 200 500 1000

Fig. 6. Avalanche size distribution in 2D system¥@.S rule. Figure is based
on 1000 samples, each containiNg=100x Iflars
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Fig. 7. Avalanche size distribution in 2D systemlfaS rule. Figure is based
on 1000 samples, each containiNg=100x Ifilars

In Figure 8, we compare the avalanche distributfonghe LLS rule in a one-
dimensional system. As can be seen, the distribuiio small-size avalanches
apparently follows a power law with exponents: 42 and o = 4.5. When the
load is transferred to the two nearest neighbolesnhodel is characterised by
a greater number of avalanches of a given sizemnparison to a model to load
transfer to a single nearest neighbour.

Figure 9 illustrates the avalanche distributionstieo-dimensional variants of
the LLS model. We obtained two separate runs ofaa¢he distribution: one for
variants transferring load to a maximum numberwb theighbours (exponent
o = 4.5) and the second for variants transferring loadhted or more neighbours

(exponenta = 3.8).
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Fig. 8. Avalanche size distributions in 1D systemlfLS variants: load transfer
to two nearest neighbours (squares), load tratsfene nearest neighbour (circles).
Simulation results are based on 1000 samples,aathiningN = 1¢* pillars
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Fig. 9. Avalanche size distributions in 2D syst@mlfLS variants - load transfer to:
one nearest neighbour (circles), two nearest neigtsh(squares), three nearest
neighbours (diamonds), four nearest neighbourdr{apgle), five nearest neighbours
(down triangle). Simulation results are based cd01€amples, each containing

N = 10 pillars

In order to get a closer look at the distributidragalanches for the LLS rule,
we have performed 200 000 simulations for a onesdsional system of size
N =10". It appears that the resulting avalanche distobuis in fact exponential,
see Figure 10, and this is in accordance with thik Wy Klosteret al. (1997) [5, 6].

In the following we analyze the correlation betwelea size of the catastrophic
avalancheA, and the total critical loadr.. As a measure of this correlation, we

use Pearson’s coefficient defined as
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(2)

Here, g, .0 are the corresponding standard deviations. Wehgetfdllowing

values p'*° =-0.943 and p®-° = 0.165, in the LLS and the GLS models, respec-
tively. For GLS, we can say that the correlationeagligible or does not exist. It is
in contrast to the LLS rule for which there is eoety negative correlation. Gra-
phically it has been shown in Figures 11 and 12.

1 2 4 S 10 15
Fig. 10. Avalanche size distribution in 1D systemlfLS with load transfer to one right
neighbour. Figure is based on 200 000 samples, @atthiningN = 10* pillars
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Fig. 11. Size of final catastrophic avalanche, vs. total critical forceF, in 2D system
for LLS rule. Figure is based on 30 000 samplesh eantaining\ = 1 pillars
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Fig. 12. Size of final catastrophic avalandhe, vs. total critical forceF, for GLS.
Figure is based on 100 000 samples, each contdihingC* pillars

Discussion

We have studied the avalanche size distributiorgt@si-statically loaded sets
of pillars. Three different load transfer rules éaween considered. For both the
GLS and VLS models the avalanche distribution feica power law, by contrast
for the LLS model, the avalanche distribution ip@xential.

In the present work, the values of critical stressed sizes of catastrophic ava-
lanches have been analysed. These results aran@@ger one size of the system.
Work concerning the dependence of critical stremsies and catastrophic ava-
lanche sizes in relation to different system sizeghe LLS model is in prepara-
tion.

Finally we have noticed a strong negative corretalietween the size of the fi-
nal avalanche and the critical load in the LLS nhpddereas for the GLS model
there is rather no correlation between these tvemtiies.
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