Please cite this article as:

Nadiya Gubareni, Valuation and discrete valuation rings, Scientific Research of the Institute of Mathematics and
Computer Science, 2011, Volume 10, Issue 1, pages 61-70.

The website: http://www.amcm.pcz.pl/

Scientific Researctf the Instituteof Mathematicand Computer Science, 1(10) 2011, 61-70

VALUATION AND DISCRETE VALUATION RINGS

Nadiya Gubareni

Czestochowa University of Technology, Poland
nadiya.gubareni @yahoo.com

Abstract. In this article we consider non-commutative valoatiand discrete valuation
rings. We give equivalent conditions for a ringhe a valuation and a discrete valuation
ring.

Introduction

The theory of valuation rings first was connectatyavith commutative fields.
The theory of valuations and valuation rings hawartbeginning from the early
20th century. The concepts of valuations of fiedldd valuation domains first were
introduced in 1932 by W. Krull in his famous papg&}. In this paper a valuation
ring was defined as an integral domain whose &dageg totally ordered by inclu-
sion, i.e. commutative uniserial domains. He alsonsed the connection between
the concepts of valuation domains and valuatiogsiof fields.

However, there is also a non-commutative side o theory. In the non-
commutative case there are different generalinatiof valuation rings. The first
generalization for valuation rings of division rsxgvas obtained by Schilling in
[2], who introduced the class of invariant valuatiings and systematically stud-
ied them in [3]. If we consider the invariant vaioa rings of division rings which
were introduced by Schilling in [2], one obtainattlny invariant valuation ring is
a semihereditary ring. Hence, semihereditary ritegs be considered as some ge-
neralizations of Prifer domains for non-commutativegs. A particular example
of invariant valuation rings are discrete valuatramgs, which are, besides only
fields and division rings, the simplest class iofys. Nevertheless, they play an
important role in algebra, number theory and algebgeometry.

Another generalization of non-commutative valuatimys was introduced and
studied by N.I. Dubrovin in [4]. These rings wa@med Dubrovin valuation rings
after him. In this non-commutative valuation theagy Dubrovin valuation ring
of a simple Artinian rind) is exactly a local semihereditary orderQ@fTherefore,
semihereditary orders can be considered as thealgltbbory of Dubrovin valua-
tion rings. Dubrovin valuation rings have foundaage number of applications.
More information about these rings and semihergdibaders in simple Artinian
rings can be found in book [5].
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In this paper we present and shortly discuss mib#teobasic results for non-
-commutative invariant valuation rings and discretduation rings of division
rings.

All the rings considered in this paper are assutoelie associative with20,
and all the modules are assumed to be unital. We W(A) for the group of units
of a ringA, andD* the multiplicative group of a division rinB. We refer to [6]
for general material on the theory of rings and ulesl

1. Valuation rings of division rings

The basic notion which plays the main role forthtuation theory is a totally
ordered group.

Definition 1. A groupG (with operation written by +) is said to batally ordered
(or linearly ordered) if there is a binary order relationin G which satisfies the
following axioms:

(i) eithera >BorB>a;
(i) if a>pandp>athena=p;
(iii) if a>pandB>ythena> vy,
(iv) ifa>=pBtheny+a >y+Banda +y>p +y
foralla, 3,ydG.
If > is an order relation in a gro@we shall writea > if a > 3 anda # 3,
we shall also writer < B if B> a anda < if B >a.
In the non-commutative case there are differenegsizations of a valuation

ring. We consider the generalization which wast faroposed in 1945 by Schilling
[2], who extended the concept of a valuation oield to that on a division ring.

Definition 2. [2] Let G be a totally ordered group (written additively)thvi
order relatior>. Add toG a special symbal such thak + 00 =0 + x = [ for all
x O G. LetD be a division ring. Aialuation onD is a surjective map

v.:D - GO {0}

which satisfies the following:
Dv(x) <O

2)v(x) =0 if and only ifx = 0;
3) v(xy) = V(X) +\(y);

4) v(x +) = min(u(x), v(y)),
for anyx,y O D.

Note that ifD is a field, then from condition 3) it follows immdiately thatD
admits only valuations with Abelian grou@s
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Remark 1. Let D be a division ring with valuatiom and multiplicative grou*.
Denote

U={uldD* v(u)=0}

If uy, u, O U thenv(uup) = v(uy) + v(up) = 0 andv(uyu;) = v(uy) +v(ug) = 0, i.e.
Ui, Uy U. Let 1 be the identity ob. Thenv(1) = v(1%) = v(1) +v(1) implies
that 10 U. If u O U then 0 =v(1) =v(uu™) = v(u) + v(u™) =v(u™), i.e.u™ O U.
ThusU is a subgroup ob* which is called thegroup of valuation units. Let
x O D*. Thenv(xux™) = v(x) + v(u) + v(X™) = v(x) + v(x ™) = v(xx™) = 0 for any
u 0 U. Thus,U is an invariant subgroup &* which is equal to Kex(). Therefore
D*/U =G.

Proposition 1. Let (G, +,>) be a totally ordered group, and let

v.: D - GO{1}
be a valuation of a division rirg. Then
A={xOD : v(x)>0}
is a subring oD.

Proof. Let x, y O A, thenv(x), v(y) > 0. Thereforev(xy) = v(x) + v(y) > 0 and
V(X +y) > min(v(x), v(y)) > 0, which means thay [ A andx +y [1 A. Moreover,

V(=X) =Vv((-1) X) =v(-1) +v(X) =v(X) > 0
for anyx O A.

Definition 3. A subringA of a division ringD is called aninvariant valuation
ring (or valuation ring for short) ofD if there is a totally ordered group and
a valuation

v.:D - GUO{T}
of D such that
A={xOD : v(x)>0}.
Lemma 1. Let A be a valuation ring of a division rifg with respect to valuation

v. Then U = U(A), where U(A) is the group of valuation units db, and
U={x0OD:v(x) =0}

Proof. Suppose thatu O U(A), then there is elememt 00 U(A) such thauw = 1.
Therefore 0 =v(uw) = v(u) + v(w). Sov(u) = v(w) = 0, sincev(u) > 0 andv(w) > 0.

Conversely, supposel D andv(u) = 0. Theru™ O D* andv(u™) = -v(u) = 0.
Henceu, u™ O A, which means that 0 U(A).
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For any invariant valuation ringy associated to the valuatignwe denote
M={xOD : v(x) >0} =A\U,
the set of all non-units @k

Lemma 2. An invariant valuation rind\ is a local ring with the unique maximal
left (and maximal right) idea¥l of A.

Proof. Letx,y 0 M anda [ A. Then
1) v(x+y) = min(/(x),v(y)) >0, that isx +y [0 M;
2) v(xa) = v(x) +v(a) > 0 andv(ax) = v(a) +v(x) > 0, that isax, xa L M.

Thus,M is an ideal oA. Show thaM is the maximal ideal oA. Suppose thdt
is an ideal ofA such thaM &1 @ A. SinceM = A\ U, there is a uniti J | such that
v(u) = v(u™) = 0 andu™ O A. Consequently, 1au™ O I. Thus,| = A, i.e.M is
a maximal ideal oA. SinceM = A\ U, M consists of all non-units &, thereforeA
is a local ring, an! is the unique maximal ideal 8, by proposition 10.1.1 [6].

Lemma 3. [2] If Ais the valuation ring of a division rirlg with respect to valua-
tion v on D then bothA andM are invariant subsets d*, that is, dAd *=A and
dMd ™= M for anyd O D*.

Proof. Suppose that thaAd™ [ A for somed 0 D*. Then there is an elemext
=dyd™ O dAd™ withy O A andx [ A. Thereforev(x) < 0 andv(y) > 0. On the
other handy = d™xd, and so

V(y) =v(d™) +v(x) +v(d) <v(d™) +v(d) =v(1) =0,

sinceG is a totally ordered group. This contradictionwhdhat dAd™ = A for any
d 0 D*.

Suppose thaiMd™ (M for somed O D*. Then there is an elemert= dyd™
O dMd™ withy 0 M andx (M. SincedMd* O dAd*=Aand A=M 0 U, x O U.
By remark 1U is an invariant subgroup &f*, and soy = d'xd O U. Consequent-
ly, yOM n U =0. This contradiction shows thit is an invariant subset &f*.

The following theorem gives the equivalent defonitiof a valuation ring which
is similar to the valuation domains of fields.

Theorem 1. (O.F.G. Schilling [2]) LetA be a subring of a division ring. Then

the following are equivalent:

1. Ais a valuation ring with respect to some valuatiamD.

2. Alis an invariant subring @*, and for any element 0 D* eitherx D Aorx*
OA.

Proof. 1 = 2. Ais an invariant subring, by lemma 3. SupprseD* andx [ A,
which means that(x) < 0. Then 0 =v(1) = v(xx!) = v(X) + v(x), hence
v(x™) =-v(x)>0. Thusx * O A.
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2 = 1. Suppose that is an invariant subring of a division rimy with the group
of units U(A). Let u 0 U(A) andd O D*. Then x=dud* OAand x' =
=d'u™d O A Thereforex, x ' 0 U(A), i.e.U(A) is an invariant subgroup db*.

Let M = A\ U(A). Show that this set is also invariantD. Let d 00 D*. As-
sume thatMd™ # M. This means that there exists an elementdyd ™" O dMd™
with y O M andx [ M. Note thatx 0 A, sinceA is an invariant subring iD*.
Thereforex D U(A) andy =dxd O U(A), since U(A) is invariant inD*. So
y OM n U(A) = 0. This contradiction shows thit is invariant inD*.

Since U(A) is an invariant subgroup iD*, we can consider the factor group
G = D*/U(A) as an additive group and define the natural map - G O{O}
such thaw(d) = dU(A) = U(A)d for eachd OO D* and v(0) = . Obviously,v(du) =
= v(ud) for all u 0 U(A) andd O D*. We setv(u) = 0 for anyu O U(A). Thenv is
a surjective map with Ker] = U(A). We must only introduce the total order®n
assuming thaw(x) < « for all x 0 D. Leta, b O D*. By assumption, either
a'bOAorb™alA. Supposab A, thena(@™'b)a™ = ba ‘0 A, sinceA is an
invariant ring in D*. We use this fact to order grod We setv(a) > v(b) in the
caseab O M (andb™a O M). In this wayG turns out to be totally ordered. Show
thatv is a valuation ofD with valuation ringA. Indeed,

1) v(x) < [T,

2) v(x) =0 if and only ifx = 0;

3) vis surjective;

4) v(d) = 0 if and only ifd 00 U(A);

5) v(ab) = v(a)v(b).

6) Let a,b [0 D* and atb # 0. Assume thatv(a) > v(b) in G. This means that
ab™ O M orab® O U(A). In both casesb™1 O A, since 1 = T 0 A. Since
(atb)b™ = ab ™t + 10 A, v(a+b) > v(b) = min{(a), v(b)). If a + b = 0, then
v(at+b) = 0 and we also hawga + b) > v(b) = min(«(a), v(b)).

This theorem gives a possibility to introduce otkieds of generalizations for
a valuation ring of a division ring.

Definition 4. A subringA of a division ringD is called atotal valuation ring if
for eachx 0 D* we havex O Aorx ' OA.

Theorem 1 states that any invariant valuation réng total valuation ring, but
not conversely. Note that in the case of integ@hains these two notions for
valuation rings are equivalent to the notion ofassical valuation domain.

Lemma 4. (O.F.G. Schilling [2]) LetA be the valuation ring of a division rirg
with a valuatiorv, anda,b [0 A. Then the following statements are equivalent:
1) a=bc; withc; O A,

2) a=cbwithc, OA,

3) v(a) > v(b).

Proof. 1), 2)= 3). Suppose = bc; = ¢cb with ¢y, ¢; O A. Thenv(a) =v(b) + v(c,) =
=v(cy) + v(b) > v(b) by condition 4) of definition 1.
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3) = 1), 2). Supposg(a) > v(b) andb # 0. Thenv(ab™) > 0 andv(b™a) > 0, that
is,ab 0 Aandb™adA. Thus,a=b(b™a) = (ab™)b.

Supposes/(a) > v(b) andb = 0. Therv(b) = [0 and sov(a) = [J, hencea = 0. This
means thaa is again both a left and a right multipletof

The next proposition gives the basic propertieisedriant valuation rings.

Proposition 2. Let A be an invariant valuation ring of a division rimy with

a valuatiorv. Then

1. aAODbAorbAaAfor anyab A

2. Each ideal ofA is two-sided, i.eA is a duo ring. (Recall that a ridgis called
aleft (right) duoring if every left (right) ideal is two-sided. Auo ring means
both a left and a right duo ring).

3. Ais aright and a left Ore domain. Therefore it &dsft and right classical
ring of fractions which is a division ring.

4. Any finitely generated ideal oA is principal.

Proof. 1. This follows immediately from lemma 4.
2. Suppose thdtis a left ideal ofA, that is,Al O 1. Since 100 A, Al = 1. Let

n
X = Zyiai be an arbitrary element of the dét wherey, 00 |, & O A. Then
i=1

v(yia) = v(y:) + v(a) > v(y). Consequently, by lemma ¥ia = byy; for someb; O A.
Thereforex = Zb, y, OAI =1.Thusl is a right ideal.

i=1

3. Letl = xA, thenAl = AXA = XA, sincel is a two-sided ideal. Analogously,
Ax = AXA. ThereforeAx = xA. This means thad satisfies the right and left Ore
conditions. SinceéA is a domain (that is, a ring without divisors @&fra), A has
a left and right classical ring of fractions whisha division ring.

4. Letl =ajA+ aA+ ... +aA whereg [0 A. SinceA is a valuation ring then
we can choose among the elememtsa,,...,a, an element with a minimal value.
Without loss of generality, we can consider tigt) > v(a;) for all i. Then, by
lemma 4, this means thaA 0 a;A. Sol = a;A.

As immediate consequences of this proposition, btain the following.

Corallary. Any invariant valuation ring of a division ririgy is semihereditary and
a Bézout ring. (Recall that a rirgis called a right Bézout ring if any of its finliye
generated ideal is principal.)

The following theorem gives the equivalent defonits of a (hon-commutative)
invariant valuation ring.

Theorem 2. LetA be aring with a division ring of fractiom®which is invariant
in D. Then the following are equivalent:

1. Ais an invariant valuation ring of some valuatioon D.

2. The set of right (left) principal ideals #fis linearly ordered by inclusion.

3. The set of all ideals A is linearly ordered by inclusion.
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Proof.

1= 2. Leta, b O A andv(a) > v(b). Then from lemma 4 it follows that[] bA and
a [J Ab. ThereforeaA [J bA andAa [J Ab.

2 = 3. Letl andJ be right ideals ofA. Suppose that is not contained ird.
Choose a nozero elemextd | \ J. Lety be any element of. Sincex [ J,
x [ yA, and soxA[ yA. Therefore, by assumptiornyA 0 xA [ I. It follows that
Jal.

3 =1. By assumptiorA is a domain which has a division ring of fracti@hs_etx
0 D be a nonzero element. Ther= ab™ for some nonzera,b 0 A. SinceA is
a uniserial ringAa [ Ab or Ab [ Aa. If Aa [0 Ab thena =rb for somer [ A. Then
x=abt=rbbt=r OA If Ab @ Aathenb=sawithsOA Thenx'=ba'=
=saa '=s[A. SinceA is invariant inD by assumptionA is a valuation ring, by
theorem 1.

2. Non-commutative discrete valuation rings

Similar to the commutative case of a field, one @a&noduce the notion of
a discrete valuation ring of a division ring.

Definition 3. A subring A of a division ringD is called the (noncommutative)
discretevaluation ring if there is a (discrete) valuationD — Z of D such that

A={xOD : v(x)>0}

The main example of noncommutative discrete vabnatings is a skew power
series ring K[[x, a]] with xa =o(a)x for anya K, whereK is a field ando:
K - K s a nontrivial automorphism ¢.

We formulate the basic properties of a discret@at&bn ring in the following
proposition.

Proposition 3. Let A be a (noncommutative) discrete valuation ring ieisibn
ring D with respect to a valuation Lett be a fixed element oA with v(t) = 1.
Then

1. Ais a local domain with the nonzero unique maxind@al M = {x O A :
v(x) >0}.

2. Any nonzero elemenk O A has the unique representation in the form
x = t"u=wt", for someu,w O U(A), andn 0 Z, n> 0. If D is a division ring of
fractions ofA then any elemeng O D* has the formy = t"u = wt" for some
uwOU(A), andn O Z.

3. Any one-sided ideal of A is a two-sided ideal and has the folns t"A =
= At" for somen 0 Z,n> 0, i.e.Ais a principal ideal ring (Recall that a riAg
is called gorincipal ideal ring if each one-sided ideal éfis principal). In par-
ticular,M =tA=At, andl = M" =t"A = At".
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4. | M'=0,whereM is the unique maximal ideal &f
i=1

5. Ais a Noetherian uniserial ring.

6. Ais a hereditary ring.

Proof. 1. Since a discrete valuation ridgis a particular case of a valuation ring,
this statement follows from lemma 2.

2. Lett be a fixed element @& with v(t) = 1, andx 00 A with v(x) =n> 0. Then
tOM, andv(xt™ = v(x) —n = 0 =v(t™X). Therefore from lemma 1 it follows that
xt™ =u0U(A) andt™x = u; 0 U(A). Sox = ut" = t"u;.

Lety O D*. SinceD is the division ring of fractions @&, any elementy O D*
can represented in the folyre ab™ with a,b O A. Leta=t"u and b = t"w with
uw O U(A) andn,m > 0. Theny = (t"u)(t"w) = t""u;w; = uwot"™, whereu,wy,
uw, O U(A) andn —-mO Z.

3. SinceA is a valuation ring, any one-sided idealos two-sided. Let be an
ideal of A. Choose inl an elemenk with a minimal valuev(x) = n (if there are
a few such elements we can arbitrarily choose drfenx = t"u = wt" with uw O
U(A). Thereforg"A O 1 andAt" O I. Lety O I, theny =t"w with m>n. Sov(t™y) >
0, henca™y O A andy O t"A. Thereford =t"A. Analogously] = At". In particular,
sincet O M, M =tA=At, andM"=t"A=At"=1.

4. Assume tha=| M ' #£0. Letx be a nonzero element Nfwith v(x) =n>
i=1

0. Thenx =t"u O M" with u 0 U(A). Since x O N, x 0 M™*. Thereforex =t""'w
with w OU(A). Sot"u = t""*'w. SinceA is a domainy = tw 0 M. A contradiction.
ThusN = 0.

5. This follows immediately from 3 and theorem 2.

6. This follows from the fact thak is a principal ideal domain and any princi-
pal ideal over a domain is free.

Together with definition 3 there are other equinaldefinitions of a discrete
valuation domain which are given in the followirtgtement.

Proposition 4. The following statements for a ridgare equivalent.
(1)Ais a (noncommuative) discrete valuation domain.
(2)Ais a local ring with nonzero maximal idédl of the formM =tA = At, where

t 0 Ais a non-nilpotent element, ajdM' =0.
i=1
Proof. (1) = (2). From proposition 3 it follows thétis a local ring with nonzero
maximal idealM of the formM = tA = At, wheret O M with v(t) = 1. SinceA is
a domain, t is a non-nilpotent element.
(2) = (1). SinceM =tA = At, it is easy to show directly thit" = t"A = At". Show
that any nonzero elemext] A has a unique representation in the farmt"u = wt",
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whereuw 0 U(A) andn > 0. Letx [ U(A), thenx O M. Since| M' =0, there
i=1

existsn > 1 such thak 0 M" butx [ M™*. Thenx = t"u, whereu [ M. Therefore
u O U(A). Analogouslyx = wt".

Ring A is a domain. Otherwise there are elements$] A such thaky = 0. Let
x =1t"u, y = t"w andut™ = t"u; with uw, u; 0 U(A). Thenxy =t™"u;w = 0, and so
t™™= 0, which is not the case, sincis a non-nilpotent element. A contradiction.

Show thatA is a right and left Ore domain. Lely be nonzero elements &f
Supposex = t"u, y = t"w, ut™ = t"u; andwt" = t"w; with u,w, uy, w; O U(A). Then
xy = t"ut"w = t"t"u,w = t"t"uw = t"Ww it uw = yxg, wherex, = wituw O A
Analogously,yx = xy;, wherey;, = u"t"w;u. This shows thaf satisfies the right
and the left Ore conditions. @ohas a division ring of fractiori3. Any element of
D* can be represented in the forh= ab™, wherea, b O A. If a = t"u and
b = t"w with uw O U(A) andn,m > 0, thend = t"™¢, wheren - m O Z and
€ O U(A). If we setv(d) =v(t""e) =n —m O Z, we obtain a valuation d* with
the discrete valuation ring.

This finishes the proof of the proposition.

Proposition 5. The the following statements for a riAgare equivalent.

(1) Ais a (honcommuative) discrete valuation domain.

(2) Ais a local principal ideal domain which is notigision ring.

(3) A is a Noetherian local ring with a nonzero maximd@al which is two-sided
and principal.

(4) A'is a right (left) Noetherian local ring with th@mzero maximal ided\l of
the formM =tA = At with a non-nilpotent element] A.

Proof. That statement (1) implies each of the other ptgggewas proved above.
The implications (2 (3) and (3)= (4) are trivial.

(4) = (1). Let A be a Noetherian local ring whose maximal idbal 0, and
M = tA = At. Note thatM" # M™" for anyn > 0. Otherwise, by the Nakayama lem-
ma,M"= 0, andt" = 0, which is not the case, sincis a non-nilpotent element.

4] 4]

We now prove tha] M'=0. Otherwise there is a nonzero elemeft | M'.
i=1 i=1
Thenx=ay=ait =at® = ... =at" = ... for suitableg; O A.

Everya [ U(A). Otherwisea — a.it O U(A), and fromat' = a.,t** it would
follow thatt' = 0, that ist is nilpotent, which is not the case. So we haeeas
cending chain of right principal ideagsA [ a,A U ... which must be stabilized
becauseA is Noetherian, i.e. there is a numiper 0 such thata,A = a,.;A. Then
a1 = ab and a,= a,.;c for someb,c 0 A. Hence an.; = ab = aycb, and
a.+1(1 — cb) = 0. Since + cb 0 U(A), a1 = 0. Sox = 0. This contradiction shows

i+1

that | M' =0. Now we can apply proposition 4.
i=1
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Proposition 6. The following statements for a ridgare equivalent.
(1)Ais a (noncommuative) discrete valuation domain.

(2)Ais a Noetherian non-Artinian uniserial ring.

(3)Ais a Noetherian valuation ring.

Proof. Implications (1)= (2) and (2)= (3) were proved in proposition 3. Impli-
cation (2)= (3) follows from theorem 2.

(2) = (1). LetA be a uniserial Noetherian but a non-Artinian rifigen the unique
maximal ideaM of A is the Jacobson radical Af M # 0 andM "/M ™ is a simple
A-module. So we have a strictly descending chaidexdls

AOMOM?20..0M"O (1)

HenceM is nilpotent, otherwise, (1) is a composition egriorM and soA is
an Artinian ring, which is not the case. Chooselementt 0 M \ M 2. SinceA is
uniserial,M? O tA O M. HenceM = tA, sinceM/M ? is a simpleA-module. Analo-
gously,M = At. Now we have exactly case (4) of proposition 5.

(3) = (1). Let A be a Noetherian valuation ring. Then any ideala$ finitely
generated, hence it is principal by propositiorThus, A is local principal ideal
domain which is not a division ring. Therefore vaa@pply proposition 5.
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