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Abstract. In this article we consider non-commutative valuation and discrete valuation 
rings. We give equivalent conditions for a ring to be a valuation and a discrete valuation 
ring.  

Introduction  

The theory of valuation rings first was connected only with commutative fields. 
The theory of valuations and valuation rings have their beginning from the early 
20th century. The concepts of valuations of fields and valuation domains first were 
introduced in 1932 by W. Krull in his famous  paper [1]. In this paper a valuation 
ring was defined as an integral  domain whose ideals are totally ordered by inclu-
sion, i.e. commutative uniserial domains. He also showed the connection between 
the concepts of valuation domains and  valuation rings of fields. 

However, there is also a non-commutative side of this theory. In the non- 
commutative  case there are different generalizations of valuation rings. The first 
generalization for valuation rings of division rings was obtained by Schilling in 
[2], who introduced the class of invariant valuation rings and systematically stud-
ied them in [3]. If we consider the invariant valuation rings of division rings which 
were introduced by Schilling in [2], one obtains that any invariant valuation ring is 
a semihereditary ring. Hence, semihereditary rings can be considered as some ge-
neralizations of Prüfer domains for non-commutative rings. A particular example 
of invariant valuation rings are discrete valuation rings, which are, besides only 
fields and division rings,  the simplest class of rings. Nevertheless, they play an 
important role in algebra, number theory and algebraic geometry. 

Another generalization of non-commutative valuation rings was introduced and 
studied by N.I. Dubrovin in [4]. These rings  were named Dubrovin valuation rings 
after him. In this non-commutative valuation theory, any Dubrovin valuation ring 
of a simple Artinian ring Q is exactly a local semihereditary order of Q. Therefore, 
semihereditary orders can be considered as the global theory of Dubrovin valua-
tion rings. Dubrovin valuation rings have found a large number of applications. 
More information about these rings and semihereditary orders in simple Artinian 
rings can be found in book [5].  
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In this paper we present and shortly discuss most of the basic results for non- 
-commutative invariant valuation rings and discrete valuation rings of division 
rings.  

All the rings considered in this paper are assumed to  be associative with 1 ≠ 0, 
and all the modules are assumed to be unital. We write U(A) for the group of units 
of a ring A, and D* the multiplicative group of a division ring D. We refer to [6] 
for general material on the theory of rings and modules. 

1. Valuation rings of division rings 

The basic notion which plays the main role  for the valuation theory is a totally 
ordered group. 
 

Definition 1. A group G (with operation written by +) is said to be totally ordered 
(or  linearly ordered) if there is a binary order relation ≥ in G which satisfies the 
following axioms: 

(i)  either α  ≥ β or β ≥ α; 

(ii)  if α ≥ β and  β ≥ α then α = β; 

(iii)  if α ≥ β and  β ≥ γ then α ≥  γ; 
(iv)  if α ≥ β then γ + α  ≥ γ +β and α + γ ≥ β + γ 
for all α, β, γ ∈  G. 

If  ≥  is an order relation in a group G we shall write α > β if α ≥ β and α ≠ β, 
we shall also write α ≤ β if β ≥ α and α < β if β > α. 

In the non-commutative case there are different generalizations of a valuation 
ring. We consider  the generalization which was first proposed in 1945 by Schilling 
[2], who extended the concept of a valuation on a field to that on a division ring. 
 

Definition 2. [2] Let G be a totally ordered group (written additively) with  
order relation ≥. Add to G a special symbol ∝  such that x + ∝  = ∝  + x = ∝  for all  
x ∈  G. Let D be a division ring. A valuation on D is a surjective map  

v: D → G ∪  { ∝ } 

which satisfies the following: 
1) v(x) ≤ ∝ ;  
2) v(x) = ∝  if and only if x = 0; 
3) v(xy) = v(x) + v(y); 
4) v(x + y) ≥ min(v(x), v(y)),   
for any x, y ∈  D. 

Note that if D is a field, then from condition 3) it follows immediately that D 
admits only valuations with Abelian groups G. 
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Remark 1. Let D be a division ring with valuation v and multiplicative group D*. 
Denote  

 U = {u ∈  D*:  v(u) = 0} 

If u1, u2 ∈  U then v(u1u2) = v(u1) + v(u2) = 0 and v(u2u1) = v(u2) + v(u1) = 0, i.e. 
u1u2, u2u1∈  U. Let 1 be the identity of D. Then v(1) = v(12) = v(1) + v(1) implies 
that 1 ∈  U. If u ∈  U then 0 = v(1) = v(uu−1) = v(u) + v(u−1) = v(u−1), i.e. u−1 ∈  U. 
Thus U is a  subgroup of D* which is called the group of valuation units. Let  
x ∈  D*. Then v(xux−1) = v(x) + v(u) + v(x−1) = v(x) + v(x−1) = v(xx−1) = 0 for any  
u ∈  U. Thus, U is an invariant subgroup of D* which is equal to Ker(v). Therefore  
D*/U ~ G. 
Proposition 1. Let (G, +, ≥) be a totally ordered group, and let  

 v: D → G∪ { ∝ } 

be a valuation of a division ring D. Then  

 A = {x ∈  D  :  v(x) ≥ 0} 

is a subring of D. 
 

Proof. Let x, y ∈  A, then v(x), v(y) ≥ 0. Therefore v(xy) = v(x) + v(y) ≥ 0 and  
v(x + y) ≥ min(v(x), v(y)) ≥ 0, which means that xy ∈  A and x + y ∈  A. Moreover,  

 v(−x) = v((−1) x) = v(−1) + v(x) = v(x) ≥ 0 

for any x ∈  A.  
 

Definition 3. A subring A of a division ring D is called an invariant valuation 
ring (or valuation ring for short) of D if there is a totally ordered group G and 
a valuation  

 v: D → G ∪ { ∝ } 

of D such that 

 A = {x ∈  D  :  v(x) ≥ 0}. 

Lemma 1. Let A be a valuation ring of a division ring D with respect to valuation 
v. Then U = U(A), where U(A) is the group of valuation units of D, and  
U = {x ∈  D : v(x) = 0}. 
 

Proof. Suppose that  u ∈  U(A), then there is element w ∈  U(A) such that uw = 1. 
Therefore  0 = v(uw) = v(u) + v(w). So v(u) = v(w) = 0, since v(u) ≥ 0 and v(w) ≥ 0.  

Conversely, suppose u ∈  D and v(u) = 0. Then u−1 ∈  D*  and v(u−1) = −v(u) = 0. 
Hence u, u−1 ∈  A, which means that u ∈  U(A). 
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For any invariant valuation ring A associated to the valuation v  we denote   

 M = {x ∈  D  :  v(x) > 0}  = A \ U, 

the set of all non-units of A.  
 

Lemma 2.  An invariant valuation ring A is a local ring with the unique maximal 
left (and maximal right) ideal M of  A. 
 

Proof. Let x, y ∈  M and a ∈  A. Then  

1) v(x+y) = min(v(x),v(y)) >0, that is, x + y ∈  M; 

2) v(xa) = v(x) + v(a) > 0 and v(ax) = v(a) + v(x) > 0, that is, ax, xa ∈  M. 
Thus, M is an ideal of A. Show that M is the maximal ideal of A. Suppose that I 

is an ideal of A such that M δ I φ A. Since M = A \ U, there is a unit u ∈  I such that 
v(u) = v(u−1) = 0 and u−1 ∈  A. Consequently, 1= uu−1 ∈  I. Thus, I = A, i.e. M is 
a maximal ideal of A. Since M = A \ U, M consists of all non-units of A, therefore A 
is a local ring, and M is the unique maximal ideal of A., by proposition 10.1.1 [6]. 
 

Lemma 3. [2]  If A is the valuation ring of a division ring D with respect to valua-
tion v on  D then both A and M are invariant subsets of  D*, that is,  dAd−1 =A  and  
dMd−1 = M for any d ∈  D*. 

 

Proof.  Suppose that that dAd−1 ⌠ A for some d ∈  D*. Then there is an element x = 
= dyd−1 ∈  dAd−1  with y ∈  A and x ⌠ A. Therefore v(x) < 0 and v(y) ≥ 0. On the 
other hand, y = d−1xd, and so  

 v(y) = v(d–1) + v(x) + v(d) < v(d−1) + v(d) = v(1) = 0, 

since G is a totally ordered group. This contradiction shows that  dAd−1 = A for any 
d ∈  D*. 

Suppose that dMd−1 ⌠ M  for some d ∈  D*. Then there is an element x = dyd−1 
∈  dMd–1 with y ∈  M and x ⌠ M. Since dMd−1 ⊂  dAd−1 = A and  A = M ∪  U, x ∈  U. 
By remark 1, U is an invariant subgroup of D*, and so y = d−1xd ∈  U. Consequent-
ly, y ∈  M ∩ U = ∅ . This contradiction shows that M is an invariant subset of D*.  

The following theorem gives the equivalent definition of a valuation ring which 
is similar to the valuation domains of fields.  
 

Theorem 1. (O.F.G. Schilling [2])  Let A be a subring of a division ring D. Then 
the following are equivalent: 
1. A is a valuation ring with respect to some valuation v on D. 
2. A is an invariant subring of D*, and for any element x ∈  D* either x ∈  A or x−1 

∈  A. 
 

Proof. 1 ⇒ 2. A is an invariant subring, by lemma 3. Suppose x ∈  D* and x ⌠ A, 
which means that v(x) < 0. Then 0 = v(1) = v(xx−1) = v(x) + v(x−1), hence  
v(x−1) = −v(x) ≥ 0. Thus x−1 ∈  A.  
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2 ⇒ 1. Suppose that A is an invariant subring of a division ring D* with the group 
of units  U(A).  Let  u ∈  U(A) and d ∈   D*.  Then  x = dud−1 ∈  A and   x−1  =   
= d−1u−1d ∈  A. Therefore x, x−1 ∈  U(A), i.e. U(A) is  an invariant subgroup of  D*. 

Let M = A \ U(A). Show that this set is also invariant in D*. Let d ∈  D*. As-
sume that dMd–1 ≠ M. This means that there exists an element x = dyd−1 ∈  dMd−1 
with y ∈  M and x ⌠ M. Note that x ∈  A, since A is an invariant subring in D*. 
Therefore  x ∈  U(A)  and  y = d−1xd ∈  U(A),  since  U(A)  is  invariant  in  D*.  So  
y ∈  M ∩ U(A) = ∅ . This contradiction shows that M is invariant in D*. 

Since  U(A) is an invariant subgroup  in  D*, we can consider  the factor group 
G = D*/U(A) as an additive group and define the natural map v: D → G ∪ { ∝ } 
such that v(d) = dU(A) = U(A)d for each d ∈  D* and v(0) = ∝ . Obviously, v(du) =  
= v(ud) for all u ∈  U(A) and d ∈  D*. We set v(u) = 0 for any u ∈  U(A). Then v is 
a surjective map with  Ker(v) = U(A). We must only introduce the total order on G 
assuming that v(x) ≤ ∞ for all x ∈  D.  Let a, b ∈  D*. By assumption, either  
a−1b ∈  A or b−1a ∈  A. Suppose a−1b ∈  A, then a(a−1b)a−1 = ba−1∈  A, since A is an 
invariant ring in   D*. We use this fact to order group G. We set v(a) > v(b) in the 
case ab−1 ∈  M  (and b−1a ∈  M). In this way G turns out to be totally ordered.  Show 
that v   is a valuation of  D with valuation ring A. Indeed, 
1) v(x) ≤ ∝ ;  
2) v(x) = ∝  if and only if x = 0; 
3) v is surjective; 
4) v(d) = 0 if and only if d ∈  U(A); 
5) v(ab) = v(a)v(b). 
6) Let a,b ∈  D* and a+b ≠ 0. Assume that v(a) > v(b) in G. This means that  

ab−1 ∈  M or ab−1 ∈  U(A). In both cases ab−1+1 ∈  A, since 1 = 1−1 ∈  A. Since 
(a+b)b−1 = ab−1 + 1∈  A, v(a+b) ≥ v(b) = min(v(a), v(b)). If a + b = 0, then 
v(a+b) = ∞ and we also have v(a + b) ≥ v(b) = min(v(a), v(b)). 
This theorem gives a possibility to introduce other kinds of generalizations for 

a valuation ring of a division ring. 
 

Definition 4. A subring A of a division ring D is called a total valuation ring if 
for each x ∈  D* we have x ∈  A or x−1 ∈  A. 

Theorem 1 states that any invariant valuation ring is a total valuation ring, but 
not conversely.  Note that in the case of integral domains these two notions for 
valuation rings are equivalent to the notion of a classical valuation domain. 
 

Lemma 4. (O.F.G. Schilling [2]) Let A be the valuation ring of a division ring D 
with a valuation v, and a,b ∈  A. Then the following statements are equivalent: 
1) a = bc1 with c1 ∈  A; 
2) a = c2b with c2 ∈  A; 
3) v(a) ≥ v(b). 
 

Proof. 1), 2) ⇒ 3). Suppose a = bc1 = c2b with c1, c2 ∈  A. Then v(a) = v(b) + v(c1) =  
= v(c2) + v(b) ≥ v(b) by condition 4) of definition 1. 
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3) ⇒ 1), 2). Suppose v(a) ≥ v(b) and b ≠ 0. Then v(ab−1) ≥ 0 and v(b−1a) ≥ 0, that 
is, ab−1 ∈  A and b−1a ∈  A. Thus, a = b(b−1a) = (ab−1)b.   

Suppose v(a) ≥ v(b) and b = 0. Then v(b) = ∝  and so v(a) = ∝ , hence a = 0. This 
means that a is again both a left and a right multiple of b.  

The next proposition gives the basic properties of invariant valuation rings. 
 

Proposition 2. Let A be an invariant valuation ring of a division ring D with 
a valuation v. Then 
1.  aA ⊆  bA or bA ⊆  aA for any a,b ∈  A. 
2. Each ideal of A  is two-sided, i.e. A is a duo ring. (Recall that a ring A is called 

a left (right) duo ring if every left (right) ideal is two-sided. A duo ring means 
both a left and a right duo ring).  

3. A is a right and a left Ore domain. Therefore it has a left and right classical  
ring of fractions which is a division ring. 

4.  Any finitely generated ideal of  A is principal.  
 

Proof.  1. This follows immediately from lemma 4. 
2. Suppose that I is a left ideal of A, that is, AI ⊆  I. Since 1 ∈  A, AI = I. Let  

x = ∑
=

n

i
iiay

1

 be an arbitrary element of the set IA, where yi ∈  I, ai ∈  A. Then 

v(yiai) = v(yi) + v(ai) ≥ v(yi). Consequently, by lemma 4, yiai = biyi for some bi ∈  A. 

Therefore x = ∑
=

n

i
ii yb

1

 ∈  A I = I. Thus I is a right ideal. 

3. Let I = xA,  then AI = AxA = xA, since I is a two-sided ideal. Analogously,  
Ax = AxA. Therefore Ax = xA. This means that A satisfies the right and left Ore 
conditions. Since A is a domain (that is, a ring without divisors of zero), A has 
a left and right classical ring of fractions which is a division ring. 

4. Let I = a1A + a2A + … + anA, where ai ∈  A. Since A is a valuation ring then 
we can choose among the elements a1,a2,…,an  an element with a minimal value. 
Without loss of generality, we can consider that v(ai) ≥ v(a1) for all i. Then, by 
lemma 4, this means that aiA ⊆  a1A. So I = a1A. 

As immediate consequences of this proposition, we obtain the following. 
 

Corollary.  Any invariant valuation ring of a division ring D is semihereditary and 
a Bézout ring. (Recall that a ring A is called a right Bézout ring if any of its finitely 
generated ideal is principal.) 

The following theorem gives the equivalent definitions of a (non-commutative) 
invariant valuation ring. 
 

Theorem 2.  Let A be a ring  with a division ring of fractions D which is invariant 
in D. Then the following are equivalent: 
1. A is an invariant valuation ring of some valuation v on D. 
2. The set of right (left) principal ideals of A is linearly ordered by inclusion. 
3. The set of all ideals of A is linearly ordered by inclusion. 
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Proof. 
1 ⇒ 2. Let a, b ∈  A and v(a) ≥ v(b). Then from lemma 4 it follows that a ∈  bA and 
a ∈  Ab. Therefore aA ⊆  bA and Aa ⊆  Ab. 
2 ⇒ 3. Let I and J be  right ideals of A. Suppose that I is not contained in J. 
Choose a nozero element x ∈  I \ J. Let y be any element of J. Since x ⌠ J,   
x ⌠ yA, and so xA  yA. Therefore, by assumption,  yA ⊆  xA ⊆  I. It follows that   
J ⊆  I. 
3 ⇒1. By assumption, A is a domain which has a division ring of fractions D. Let x 
∈  D be a nonzero element. Then x = ab–1 for some nonzero a,b ∈  A. Since A is 
a uniserial ring, Aa ⊆  Ab or Ab ⊆  Aa. If Aa ⊆  Ab then a = rb for some r ∈  A. Then 
x = ab−1 = rbb−1 = r ∈  A.  If Ab φ Aa then b = sa with s ∈  A. Then x−1 = ba−1 =  
= saa−1 = s ∈  A. Since A is invariant in D by assumption,  A is a valuation ring, by 
theorem 1. 

2. Non-commutative discrete valuation rings 

Similar to the commutative case of a field, one can introduce the notion of 
a discrete valuation ring of a division ring. 
 

Definition 3. A subring A of a division ring D is called the (noncommutative)  
discrete valuation ring  if there is  a (discrete) valuation v: D →  Z of D such that  

 A = {x ∈  D  :  v(x) ≥ 0} 

The main example of noncommutative discrete valuation rings is a skew power 
series ring   K[[x, σ]] with  xa = σ(a)x   for any a ∈  K,  where  K  is a field and  σ: 
K → K is a nontrivial automorphism of K. 

We formulate the basic properties of a discrete valuation ring in the following 
proposition. 
 

Proposition 3. Let A be a (noncommutative) discrete valuation ring of division 
ring D with respect to a valuation v. Let t be a fixed element of A with v(t) = 1. 
Then 
1. A is a local domain with the nonzero unique maximal ideal M = {x ∈  A :  

v(x) >0}.  
2. Any nonzero element x ∈  A has the unique representation in the form  

x = tnu = wtn, for some u,w ∈  U(A), and n ∈  Z, n ≥ 0. If D is a division ring of 
fractions of A then any element y ∈  D* has the form y = tnu = wtn for some  
u,w ∈  U(A), and n ∈   Z. 

3. Any one-sided ideal I of A is a two-sided ideal and has the form I = tnA =  
= Atn for some n ∈   Z, n ≥ 0, i.e. A is a principal ideal ring (Recall that a ring A 
is called a principal ideal ring if each one-sided ideal of A is principal). In par-
ticular, M = tA = At, and I = Mn = tnA = Atn.  
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4.  0
1

=
∞

=
Ι
i

iM , where M is the unique maximal ideal of A. 

5. A is a Noetherian uniserial  ring. 
6. A is a hereditary  ring. 
 

Proof. 1. Since a discrete valuation ring A is a particular case of a valuation ring, 
this statement follows from lemma 2. 

2. Let t be a fixed element of A with v(t) = 1, and x ∈  A with v(x) = n ≥ 0. Then 
t ∈  M, and v(xt−n) =  v(x) – n = 0 = v(t−nx). Therefore from lemma 1 it follows that 
xt−n = u ∈  U(A) and t−nx = u1 ∈  U(A). So x = utn = tnu1. 

Let y ∈  D*. Since D is the division ring of fractions of A, any element  y ∈  D* 
can represented in the form y = ab−1 with  a,b ∈  A. Let a = tnu  and  b = tmw with 
u,w ∈  U(A) and n,m ≥ 0. Then y = (tnu)(tmw) = tn−mu1w1 = u2w2t

n−m, where u1w1, 
u2w2 ∈  U(A) and n − m ∈  Z. 

3. Since A is a valuation ring, any one-sided ideal of A is two-sided. Let I be an 
ideal of A. Choose in I an element x with a minimal value v(x) = n (if there are 
a few such elements we can arbitrarily choose one). Then x = tnu = wtn with u,w ∈  
U(A). Therefore tnA ⊆  I and Atn ⊆  I. Let y ∈  I, then y = tmw with m ≥ n. So v(t−ny) ≥ 
0, hence t−ny ∈  A and y ∈  tnA. Therefore I = tnA. Analogously, I = Atn. In particular, 
since t ∈  M, M = tA = At, and Mn = tnA = Atn = I. 

4. Assume that N = 0
1

≠
∞

=
Ι
i

iM . Let x be a nonzero element of N with v(x ) = n ≥ 

0.  Then x = tnu ∈  Mn with  u ∈  U(A). Since  x ∈  N, x ∈  Mn+1. Therefore x = tn+1w 
with w ∈ U(A). So tnu = tn+1w. Since A is a domain, u = tw ∈  M.  A contradiction. 
Thus N = 0. 

5. This follows immediately from 3 and theorem 2. 
6. This follows from the fact that A is a principal ideal domain and any princi-

pal ideal over a domain is free. 
Together with definition 3 there are other equivalent definitions of a discrete 

valuation domain which are given in the following statement. 
 

Proposition 4. The following statements for a ring A are equivalent. 
(1) A is a (noncommuative) discrete valuation domain. 
(2) A is a local ring with nonzero maximal ideal M of the form M = tA = At, where  

t ∈  A is a non-nilpotent element, and 0
1

=
∞

=
Ι
i

iM . 

Proof. (1) ⇒ (2). From  proposition 3 it follows that A is a local ring with nonzero 
maximal ideal M of the form M = tA = At, where t ∈  M with v(t) = 1. Since A is 
a domain, t is a non-nilpotent element.  
(2) ⇒ (1). Since M = tA = At, it is easy to show directly that Mn = tnA = Atn. Show 
that any nonzero element x ∈  A has a unique representation in the form x = tnu = wtn, 
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where u,w ∈  U(A) and n ≥ 0. Let x ⌠  U(A), then x ∈  M. Since 0
1

=
∞

=
Ι
i

iM , there 

exists n ≥ 1 such that x ∈  Mn but x ⌠ Mn+1. Then x = tnu, where u ⌠ M. Therefore  
u ∈  U(A). Analogously x = wtn.  

Ring A is a domain. Otherwise there are elements x,y ∈  A such that xy = 0. Let 
x = tnu, y = tmw and utm = tmu1  with u,w, u1 ∈  U(A). Then xy = tn+mu1w = 0, and so 
tn+m = 0, which is not the case, since t is a non-nilpotent element. A contradiction. 

Show that A is a right and left Ore domain. Let x,y be nonzero elements of A. 
Suppose x = tnu, y = tmw, utm = tmu1 and wtn = tnw1 with u,w, u1, w1 ∈  U(A). Then  
xy = tnutmw = tntmu1w = tmtnu1w = tmww−1tnu1w = yx1, where x1 = w−1tnu1w ∈  A. 
Analogously, yx = xy1, where y1 = u−1tmw1u. This shows that A satisfies the right 
and the left Ore conditions. So A has a division ring of fractions D. Any element of 
D* can be represented in the form d = ab−1, where a, b ∈  A. If a = tnu and  
b = tmw with u,w ∈  U(A) and n,m ≥ 0, then d = tn−mε, where n − m ∈  Z and  
ε ∈  U(A). If we set v(d) = v(tn−mε) = n − m ∈  Z, we obtain a valuation of D* with 
the discrete valuation ring A. 

This finishes the proof of the proposition. 
 

Proposition 5.  The the following statements for a ring A are equivalent.  
(1) A is a (noncommuative) discrete valuation domain.  
(2) A is a local principal ideal domain which is not a division ring. 
(3) A is a Noetherian local ring with a nonzero maximal ideal which is two-sided 

and  principal. 
(4) A is a right (left) Noetherian local ring with the nonzero maximal ideal M of 

the form M = tA = At with a non-nilpotent element t ∈  A. 
 

Proof. That statement (1) implies each of the other properties was proved above. 
The implications (2) ⇒ (3) and (3) ⇒ (4) are trivial.  
(4) ⇒ (1). Let A be a Noetherian local ring whose maximal ideal M ≠ 0, and  
M = tA = At. Note that Mn ≠ Mn+1 for any n ≥ 0. Otherwise, by the Nakayama lem-
ma, Mn = 0, and tn = 0, which is not the case, since t is a non-nilpotent element. 

We now prove that 0
1

=
∞

=
Ι
i

iM . Otherwise there is a nonzero element x ∈  Ι
∞

=1i

iM . 

Then x = a0 = a1t = a2t
2 = … = ant

n = … for suitable ai ∈  A. 
Every ai ⌠ U(A). Otherwise ai − ai+1t ∈  U(A), and from ait

i = ai+1t
i+1 it would 

follow that ti = 0, that is, t is nilpotent, which is not the case. So we have the as-
cending chain of right principal ideals a1A ⊂  a2A ⊂  … which must be stabilized 
because A is Noetherian, i.e. there is a number n > 0 such that  anA = an+1A. Then 
an+1 = anb and an= an+1c for some b,c ∈  A. Hence  an+1 = anb = an+1cb, and  
an+1(1 − cb) = 0. Since 1 − cb ∈  U(A), an+1 = 0. So x = 0. This contradiction shows 

that 0
1

=
∞

=
Ι
i

iM . Now we can apply proposition 4. 
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Proposition 6.  The  following statements for a ring A are equivalent. 
(1) A is a (noncommuative) discrete valuation domain. 
(2) A is a Noetherian non-Artinian uniserial  ring. 
(3) A is a Noetherian valuation ring. 
 

Proof. Implications (1) ⇒ (2) and (2) ⇒ (3) were proved in proposition 3. Impli-
cation (2) ⇒ (3) follows from theorem 2.  

(2) ⇒ (1). Let A be a uniserial Noetherian but a non-Artinian ring. Then the unique 
maximal ideal M of  A is the Jacobson radical of A, M ≠ 0 and M n/M n+1 is a simple 
A-module. So we have a strictly descending chain of ideals  

 A ⊃  M ⊃  M 2 ⊃  … ⊃  M n ⊃   (1) 

Hence M is nilpotent, otherwise, (1) is a composition series for M and so A is 
an Artinian ring, which is not the case. Choose an element t ∈  M \ M 2.  Since A is 
uniserial, M 

2 ⊂  tA ⊆  M. Hence M = tA, since M/M 2 is a simple A-module.  Analo-
gously, M = At. Now we have exactly case (4) of proposition 5.  
(3) ⇒ (1). Let A be a Noetherian valuation ring. Then any ideal of A is finitely 
generated, hence it is principal by proposition 1. Thus, A is local principal ideal 
domain which is not a division ring. Therefore we can apply proposition 5. 
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