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Abstract. The thermal wave model of bioheat transfer suppleed by boundary and ini-

tial conditions is considered. To solve the prohlém boundary element method (BEM) is
proposed. In the final part of the paper examplesumerical computations concerning
the determination of the temperature field in atingaissue are shown.

Introduction

Heat transfer in living tissues, subjected to tbgoa of strong external heat
sources can be described using different matheahatiodels. The most popular
is the Pennes equation [1-5] based on classicaidrdaw. According to the new-
est opinions [6-9], heat conduction proceedingha biological tissue domain
should be described by using a hyperbolic equai@attaneo-Vernotte equation
[10, 11]) in order to take into account its nonh@eeeous inner structure. In the
paper, the method of solving the Cattaneo-Vernetgation for a 2D problem is
proposed. It is the boundary element method usisgretization in time adapted
for the numerical solution of the thermal wave doum In successive chapters,
the boundary integral equation is derived, the moakmodel is described and the
results of computations are shown.

1. Thermal wave equation

The thermal wave model of bioheat transfer in liviissues is the following
[7, 8]:

0°T (xt) 0T (x1t)
ot? ¥

0Q(x,t)
ot

ClT

=A0T (Xt Q(xth 1 , (1)

wherec, A denote the volumetric specific heat and thermaldcativity of tissue,
respectivelyQ (x, t) is the volumetric heat due to metabolism and dhlperfusion,
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t© = a/C? is the relaxation time,a(= A/c is the diffusion coefficientC is
the velocity of thermal wave], is the tissue temperatupet denote the spatial co-
ordinates and time. Functi@y(x, t) is equal to

Q(x1)= Gy 6 [Ty =T (x.)]+ Q. @

whereGg is the blood perfusion rateg is the volumetric specific heat of blood,
Tg is the artery temperature a@g is the metabolic heat source.

It should be pointed out that for= 0, equation (1) reduces to the well-known
Pennes bioheat equation.

Equation (1) is supplemented by boundary conditions

X0 T(xtE T,(x)

3
X ,: g(xtF g (%) 3

and initial ones
t=0: T(xt)=T, W -0, 4)

t=0

where q(x, t) is the boundary heat fluxiy(x), g,(x) are the known boundary
temperature and boundary heat flux afg is known initial temperature
of biological tissue.

Taking into account formula (2), equation (1) cawpitten in the form

02T(x,t)+6T(x,t)
ot? ot

r_kaT(x,t)
c ot

=al’T(x th %[TB—T(x,t)]+%— ®)

or

0°T (xt k)oT (xt , k N
T—at(i( )+(1+%j—§: ) _an T (% th E[TB—T(x,t)]+%(6)

wherek = GgCg.

2. Boundary element method using discretization in time

To solve equation (6), the BEM using discretizationime is applied [12, 13].
At first, the time grid with constant stép =t "—t"' ™ is introduced.

Using the Lagrange interpolation for points™?( T3, @ T,
€, TH, whereT2=T(x,t™), T =T t™), T' =T(x, t"), one obtains
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T (X t) =72 (t _tf_l)(t _tf) _
’ 2(at)?

(7)
o ([ e (RS [
(At) 2(At)

On the basis of (7), the time derivatives are dated and then

0T (1) TR 4T 3T ®)
ot | _, 20t
while
azT(X,t) _Tf—2_2Tf—l +Tf (9)
ot t=tf (At)2 -

Taking into account formulas (8), (9), the followiapproximation of equation
(6) is obtained

TT (x,t"z)—ZT (x,t"l) +T (x,tf)

(at) '
(1+T_kJT(x,tf‘2)—4T(x,t"l)+3|'(X,tf): 10)
c 2t

2 f k f Qm
al? T (xt' I E[TB— T (xt") =
or
2 -1 -2 Q_
07T (xt'} AT (xt'} BT (x,t" ') CT(x,t" 2 ) == 0, (11)
where

A= T +3(C+‘Ck)+k _ 21T +2(C+‘Ck)

2 , B = 2
a (At) 20At A a (At) AAL
T c+ 1tk
= + ,
a(At)Z 2LAt

12)

Q =kT; +Q,

For equation (11) the weighted residual criterimapplied
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ij[DZT (xt' )} AT (xt' ) BT (xt' )

(13)
CT (xt'7?) +%}TE(§, x)dQ =0

where € is the observation point anti{¢,x) is the fundamental solution and
this function should fulfil the equation

027 9 x) ATY(g x)= - 8 (& x) (14)

whered (€, x) is the Dirac function.
For a 2D problem and domain oriented in the Caatesb-ordinate system it is
the following function

TO(&x) =5 Ko (rV/A), (15)

where K (O is the modified Bessel function of the secondikiri zero order [12,
13],r is the distance between observation pgint(,, &,) and pointx = (Xy, Xy).

Applying the 2nd Green formula for the first compah of equation (13), one
obtains

”DZT( T x) @ = ”DZT (& x)T(xt")a+

16
j[TD(é;,x)nEDT(x, )—T(x, ) D T (& x) | ()

and then criterion (13) takes the form

[[ToeT7 (e ) AT (&%) ]T(xt") @+
jﬂBT(x,tf‘l)—CT(x,tf‘z)+%}TD(§,x)dQ+ (17)
[[Toex)nmT (xt'} T(xt")iD T7(& x) d= 0
Using property (14) of a fundamental solutione has

T(é,tf)+%!TD(§,x)q(x,t’ +r)d|’:%lqm(é,x)T(x,tf)dr+(18)

”{BT (xt")-cT(xt"7?) +%}TD(E), x) dQ

Q
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where
g(xt'+r)=-anmT(xt"), g (&x)=- Anm T (&x) (19)
Functiong” (, ) can be calculated analytically and then

qD(é,X)—“;—ﬂK (rvA), (20)

where K (01is the modified Bessel function of the seconddkiri first order [12,
13], while

d:(xl_él)nl-'-(xz _‘iz)nz (21)
For& [T, one obtains the following boundary integral equat

B(é)T(@tf)+%ITD(<§X)Q(x,tf +1)dr =

%jqﬂ(g, x)T(xt") dr+g[BT(x,tf’l) -CT (x,t'2) +(_ﬂTD(e;, x) dQ

r

(22)

whereB (§) O (0, 1). The value of coefficier (§) results from the position
of boundary point& considered, for example for the smooth fragment
of boundaryB (&) = 0.5. Equation (22) constitutes a basis for micaéalgorithm
construction.

3. Numerical realization

To solve equation (22), bounddryis divided intoN boundary elements and in-
terior Q is divided into L internal cells. Hence, the approximate form
of equation (22) is the following:

5(¢)7(e.0)+ 23 T (e alxt o) -

1r

S [ (et o,
y

-2y, Q i
[BT( )t )=t (xt' )+ 2|12 (2, x) 0
For constant boundary elements and constant iriteefia [12, 13] one has

=1
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%T(&',tf)+%iq(xj,t’ re) [T7(¢. ) ar, =
137 (1) Ja*(g.x) or, + @

1 O i n 1 u| i
GiJ:XJT (¢ x)dr;, Hip =514 (¢ x)dr, (25)

R, =[[T7(¢ x)dQ (26)

N N L
lTif +2.Gaf = H; T+ > R (BTuf_l -CT" +9j (27)
2 j=1 i=1 =1 A
or
N N L Q
2. Gaf = H; T/ +> R (BT,H -CT"™ +_j ’ (28)
i=1 j=1 i=1 A
where
I:|ij, i # ]
Hy =4 - (29)
] H;, _1, =]
2

Equations (28) written for all boundary nodes1, 2, ...,N create the system df
algebraic equations which can be written in therixébrm

Gq' =HT' +P(BTf‘l—CT”2+%) (30)

This system of equations allows one to determie€rtiissing’ boundary tempera-
tures and boundary heat fluxes.

Next, the temperatures at the internal noflésQ,i =N+ 1,N+2, ...,.N+L
are calculated using the formula
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N N L
T' =2 Hy T - Gjaj +3 Ry (BT|H -CT,'™ +%j . (31)
j=1 j=1 =1

4. Results of computations

The biological tissue domain of dimensions 0.01% ;015 m [ = 0.015 m)
has been considered. The initial temperature oftiksue equalsl, = 37C.
The following input data have been taken into aotoa = 0.75 W/(mK),
¢ = 310° W/(m® K), Gg = 0.0005 1/sgs = 3.996210° W/(m® K), Tz = 37°C,
Qn = 245 W/n.

On boundary = 0, 0< x; < L, the Dirichlet condition in the form of, (o) =
= Trax + ((To — Trax) X2/ L) has been assumed, on boundary L, 0< x, < L, tem-
peraturel = 37°C has been accepted, while on the remaining paheoboundary,
the no-flux condition has been assumed.

The boundary has been divided into 60 constant deyrelements, the interior
has been divided into 225 constant internal c€&llee stepAt = 20 s.

Figures 1, 2 illustrate the heating curvas points 1 - (0.0055, 0.0055),
2 - (0.0095, 0.0095) and 3 - (0.0135, 0.0135).
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Fig. 1. Heating curves at points 1, 2 and 3
for Tax = 5C°C (full lines -7=0 s, broken lines = 20 s)
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Fig. 2. Heating curves at points 1, 2 and 3
for Ty = 70°C (full lines -7= 0 s, broken lines = 20 s)

Conclusions

The 2D thermal wave equation has been solved bysnefithe boundary ele-

ment method. Under the assumption that O, the results of computations have
been compared to the results obtained for the Reageation using the classical
boundary element method and they confirm the effesess and exactness
of the proposed algorithm.
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