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Abstract. Deriving true priority vectors from intuitive paiise comparison matrices consti-
tutes a key part of the Analytic Hierarchy ProceBse Eigenvalue Method, commonly
applied in the Analytic Hierarchy Process, is thestmpopular concept in the process of
ratio scaling. It is known that the Eigenvalue Methcaptures transitivity in matrices that
are not consistent in a unique way. However, tlaree other methods such as statistical
estimation techniques and methods based on caretraptimisation models that are equal-
ly interesting. This article compares two novel Imoets for priority vectors deriving, which
combine the eigenvalue concept with a constrainoinigsation based approach. Evidence
is provided that contrary to the logarithmic leaqtiares method, they coincide with the
Eigenvalue Method in capturing the ratio scale rarder inherent in inconsistent pairwise
comparison judgments.

Introduction

Plenty of methods designed for the purpose ofrities establishment on the
basis of intuitive judgments can be found in litara. Some of them are based on
different statistical concepts [1-3], while othéosus on constrained optimization
models [4-8]. Obviously, every method proposedhim literature has its own pros
and cons debate and thus one can find supportdraduersaries for each of them.
Comparative studies of different prioritization imaeds [9-15], as well as sugges-
tions to blend various prioritization techniques Eetter true priority vector esti-
mates [16], can be found as well. It seems thatt mbghe known prioritization
methods can be numbered among constrained optiorizahes [17]. However,
there are also a few others, including the mostufgoEigenvalue Method and two
recently introduced ones, which combine the eigemvapproach with a certain
constrained optimization procedure.

1. Constrained optimization methods

These methods can be described in the followingnmarLet us presume that
we have only judgments (estimates) of the relatieéghts of a set of activities.
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Then we can express them in a pairwise comparisatnxrn(PCM) denoted aé
with elementsy; = a/a that can be presented as follows:

[al/al al/a2 al/a3 K al/ an|
a2/al a2/a2 a2/a3 K a2/ an

A=|a3/al a3/a2 a3/a3 K a3/ an D
M M M M
an/al an/a2 an/a3 K an/ an|

Let us also denota(w) as the symbol of a matrix with elememis= wi/w; that
can be presented as follows:

wl/wl wl/w2 wi/w3 K wl / w
w2/wl w2/w2 w2/w3 K w2 / wn
Aw)={w3d/wl w3/w2 w3/w3d K w3/ wn (2)
M M M M
lwn/wi wn/w2 wn/w® K wn / wh

Now, if we would like to recover the vector of witg w =[w;, w,,w;,K ,Wn]T

whose true relative weights of a set of activittas be created from, as in the case
of the above matrixA(w), we can apply an optimization method which seeks
a vectow as a solution to the following minimization proive

min D(A, A(w)) (3

subject to some assigned constraints such asvmositiefficients and the normali-
zation condition.

As the distance functioD measures an interval between matridesnd A(w),
various ways of its definition lead to differeniggitization concepts. It seems that
the most popular one is called thegarithmic least squares methddLSM),
known also as the geometric mean method [2, 558,l4 this method the objec-
tive function measuring the distance betw@eandA(w) is given by:

min D (A, A(w)) = Zn:(ln a —Inw, +Inw;)? 4)

i,j=1

In order to receive the estimate of the prioritycteg, objective function (4)
needs to be minimized with subjection to the follogvconstraints:

n

w=1 w>0 i=1K,n

i
1=1
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The LLSM solution also has the following closednficand is given by the normal-
ized products of the elements in each row:

2. The eigenvalue method

There is a method that cannot be recognized aobtteose characterized as
constrained optimization ones. This method is a&mental part of the mathema-
tical theory for deriving ratio scale priority vecs (PV) from positive reciprocal
matrices with entries set on the basis of paire@m®aparisons. The theory is called
the Analytic Hierarchy Process (AHP) and it usesphincipal Eigenvalue Method
(EM) to derive priority vectors [13, 14, 18-20].

It can be described in the following manner. Lefpussume that we know the
relative weights of a set of activities. Then wa express them in a PCM like
A(w) which was described above. Now, if we would likerégover the vector of
weightsw which the ratios irA(w) can be created from, we could take the matrix
product of matrixA(w) = [Wj]nxn With vectorw in order to receive:

wl/wl wl/w2  wl/w3 K wl/wn| [wl nwl
w2/wl w2/w2 w2/w3 K w2/wn w2 nw2

wd/wl w3/w2 w3/wd K w3/wn (X} w3 | =| nw3 (6)
M M M M M M
Lwn/wl wn/w2 wn/w3d K wn/wn| |wn| |nwn

If we know A(w), but notw, we can solve this problem fav. Solving for
a nonzero solution for this set of equations iseay\common procedure and is
known as an eigenvalue problem:

AW) xwW=AXw. 7

In order to find the solution to this set of eqoas, in general, one needs to
solve annth order equation foA that, in general, leads tounique values fod,
with an associated vectarfor each of then values. However, in the case of PCM
based on priority weighting, matri&(w) has a special form, since each row is
a constant multiple of the first row. In this casgtrix A(w) has only one nonzero
eigenvalue and since the sum of the eigenvaluaspokitive matrix is equal to the
sum of its diagonal elements, the only nonzeroreigkle in such case equals the
size of the matrix and can be denotedias = n. If the elements of a matri&(w)
satisfy conditionw; = 1/w; for all i, j = 1,...,n, then matrixA(w) is said to bee-
ciprocal. If its elements satisfy conditiomw,; = w; for alli, j, k = 1,...,n and the
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matrix is reciprocal, then it is callambnsistent Finally, matrixA(w) is said to be
transitive if the following condition holds: if element; is not less than element
Wi thenvvij 2w, fori=1,...,n.

It is obvious that in real life during priority wghing we do not hava(w) but
only its estimatéA containing our intuitive judgments, more or leksse toA(w)
in accordance to our skills, experience, etc. Ithsa case, the consistency proper-
ty obviously does not hold and the relation betwelements oA andA(w) can be
expressed in the following form:

g =§ W (8

wheree; is a perturbation factor which should be closé.tti has been shown that
for any matrix, small perturbations in the entiiiaply similar perturbations in the
eigenvalues, that is why in order to estimate puerity vectorw, one needs to
solve the following matrix equation:

AXW:)\maXXW (9)
whereAna is the principal eigenvalue, it is not smallerrtimaand other character-
istic values are close to zero. The estimatesuef prriority vectow can be found

then by normalizing the eigenvector correspondimghte largest eigenvalue in
equation (9) which is simple and its existenceuiargnteed by Perron’s Theorem.

3. Least absolute- and least squar ed deviation approximation method

It has been devised [21] that instead of solvirgeevalue equation (9), one
may seek a vectav which best estimates equation (7). In order tsaeéquation
(7) as accurately as possible, two new methods vemently proposed in commu-
nication [22], they were calledeast absolute deviation approximati¢denoted
LADA) and least squared deviation approximatitthenoted LSDA).

In order to estimate PV from the LADA, the followingoal programming
model was formulated:

min>(d* +d;) (10)
i=1
subject to: d”—d"+> aw, =nw
=
dw;=1 w=20 d'20, d =20, i=1..n
=1

where[d,,d,,d;,K ,d.]" = Aw-nw.
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In order to estimate PV from the LSDA, the folloginonstrained optimization
model was formulated:

minw' Bw (11)

subject to: ij =1, w=0, i=1..n,

where B = [(A— nl )’ (A-nl )] with | being an identity matrix of ordex

4. An example scenario based analysis

In this section of the article, we provide the LARAd LSDA efficacy analysis
based on already published case studies. Some te@ppvided in the literature
[13] showed a sequentially small and drastic disaney between the results
obtained with the application of the EM and LLSMe\dopt here the AHP model
presented there in order to analyze if there issthipe discrepancy between the
LADA, LSDA and EM. The first two scenarios are simp\HP models. For the
overall goal, there are four criteria: c1, c2, a8¢d c4. For each criterion, there are
four alternatives: al, a2, a3, and a4, which aeestime for all the four criteria.
The judgment matrices and corresponding estimatioRVs obtained with the
application of the EM, LSDA, and LADA, respectivebre provided below. We
start from scenario no. 1:

with respect to the GOAL:

cl c2 c3 c4 EM LSDA LADA
c1 1 2 2 4 0.412 0.4248] [0.4249

c2 |1/2 1 3 3 0.316 0.3206 0.3229
c3 (1/2 1/3 1 4 0.194 0.1876 0.1898
c4 |1/4 1/3 1/4 1 0.079 0.0670 0.0623

with respect to criterion c1 and c4:

al a2 a3 a4 EM LSDA LADA
al 1 2 2 4 0.412 0.4248 0.4249

a2 |1/2 1 3 3 0.316 0.3206 0.3229
a3 [1/2 1/3 1 4 0.194 0.1876 0.1898
a4 |1/4 1/3 1/4 1 0.079 0.0670 0.0623
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with respect to criterion c2 and c3:

al a2 a3 a4 EM LSDA LADA
al |1 1/4 1/3 1/4 0.075 0.0637 0.0582
a2 |4 1 4 1/2 0.354 0.3579 0.3598
a3 |3 1/4 1 1/2 0.160 0.1549 0.1587

ad (4 2 2 1 0410 0.4235 0.4233

After synthesis, we obtain the following overalhking:
EM LSDA LADA

a1 | 0.240 0.2413 0.2369

a2 | 0335 0.3396 0.3418

a3 | 0177 0.1710 0.1739

a4 0248 0.2482 0.2474

We note that all three methods coincide with therahtives ranks, resulting in
a2 > a4 > al > a3. Now, we analyze scenario no. 2:

with respect to the GOAL:

cl c2 c3 c4 EM LSDA LADA
cl 1 4 2 2 0412 0.4248 0.4249
c2 |1/4 1 13 1/4 0.079 0.0670 0.0623
c3 |1/2 3 1 3 0.316 0.3206 0.3229
cd |1/2 4 13 1 0.194 0.1876 0.1898

with respect to criterion c1 and c2:

al a2 a3 a4 EM LSDA LADA
al [1 4 2 2 0412 0.4248 0.4249
a2 |1/4 1 13 1/4 0.079 0.0670 0.0623
a3 |1/2 3 1 3 0.316 0.3206 0.3229
a4 |1/2 4 13 1 0.194 0.1876 0.1898

with respect to criterion ¢3 and c4:

al a2 a3 a4 EM LSDA LADA
al |1 4 1/4 1/3 0.079 0.0670 0.0623
a2 |4 1 2 2 0412 0.4248 0.4249

a3 |4 1/2 1 1/3 0.194 0.1876 0.1898
a4 |3 1/2 3 1 0.316 0.3206 0.3229
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After synthesis, we obtain the following overalhkang:

EM LSDA LADA
a1 |0.242 0.2430 0.2390

a2 |0248| |02488 |0.2482
a3 0253 |02530] |0.2547
a4 |0256] |02552] |02581

We note that all three methods again coincide With alternatives ranks, re-
sulting in: a4 > a3 > a2 > al. We resume now withfollowing conclusions.

Conclusions

To summarize, there are other valid methods foivohgy the priority vector
from a pairwise comparison matrix, especially wki@matrix is inconsistent, that
are equally satisfying as the eigenvalue methodwAs presented in this article,
on the basis of an example scenario analysis, trerat least two such methods:
the least absolute deviation approximation anct lsqsared deviation approxima-
tion. What is more, the two latter methods, asmjzttion based, allow the deci-
sion maker to introduce additional constraintsetihg some additional require-
ments connected with the preference modelling.

Acknowledgments

The author would like to thank Andrzej Z. Grzybadvakthe inspiration of this
survey and constructive comments during the prejmaraf this paper.

References

[1] Basak I., Comparison of statistical procedures ify#éinéhierarchy process using a ranking test,
Mathematical Computation Modelling 1998, 28, 105-118

[2] Crawford G., Williams C.A., A note on the analysissabjective judgment matrices, Journal of
Mathematical Psychology 1985, 29, 387-405.

[3] Lipovetsky S., Tishler, A., Interval estimation pfiorities in the AHP, European Journal of
Operational Research 1997, 114, 153-164.

[4] Bryson N., A goal programming method for generagmigrity vectors, Journal of the Opera-
tional Research Society 1995, 46, 641-648.

[5] Cook W.D., Kress M., Deriving weights from pairwisemparison ratio matrices: An axiomatic
approach, European Journal of Operational Rese&&8, B7, 355-362.

[6] Hashimoto A., A note on deriving weights from pdsecomparison ratio matrices, European
Journal of Operational Research 1994, 73, 144-149.

[7] Lin C-C., An enhanced goal programming method foregating priority vectors, Journal of the
Operational Research Society 2006, 57, 1491-1496.



108

P. Kazibudzki

(8]
(9]

[10]
[11]
[12)
[13]
[14]
[15]
[16]
[17)
[18]
[19]

(20]
(21]

(22]

Sun L., Greenberg B.S., Multiple group decision mgkioptimal priority synthesis from pair-
wise comparisons, Journal of Optimisation Theorpligation 2006, 130(2), 317-338.

Budescu D.V., Zwick R., Rapoport A., Comparison of #malytic hierarchy process and the
geometric mean procedure for ratio scaling, ApplRsi/chological Measurement 1986, 10,
69-78.

Dong Y., Xu Y., Li H., Dai M., A comparative stuady the numerical scales and the prioritisa-
tion methods in AHP, European Journal of Operati®esearch 2008, 186, 229-242.

Fichtner, J., On deriving priority vectors from megs of pairwise comparisons, Socio-
Economic Planning Science 1986, 20, 341-345.

Hovanov N.V., Kolari J.W., Sokolov M.V., Derivingeights from general pairwise comparison
matrices, Mathematical Social Sciences 2008, 55;22D.

Saaty T.L., Hu G., Ranking by eigenvector versusiothethods in the Analytic Hierarchy
Process, Applied Mathematics Letters 1998, 11(2)-125.

Saaty T.L., Vargas L.G., Comparison of eigenvalogatithmic least square and least square
methods in estimating ratio, Journal of Mathemétitadelling 1984, 5, 309-324.

Zahedi F., A simulation study of estimation methaushe analytic hierarchy process, Socio-
Economic Planning Science 1986, 20, 347-354.

Srdjevic B., Combining different prioritisation meth®in the analytic hierarchy process syn-
thesis, Computers and Operational Research 2003892;1919.

Choo E.U., Wedley W.C., A common framework for deriyipreference values from pairwise
comparison matrices, Computers & Operation Resed@#, 231, 893-908.

Barzilai J., Cook W.D., Golany B., Consistent weights jidgments matrices of the relative
importance of alternatives, Operations Researclets987, 6(3), 131-134.

Crawford G.B., The geometric mean procedure for esgtirg the scale of a judgment matrix,
Mathematical Modelling 1987, 9(3-5), 327-334.

Saaty T.L., The Analytic Hierarchy Process, McGidill, New York 1980.

Grzybowski A.Z., Goal programming approach for dieig priority vectors - some new ideas,
Scientific Research of the Institute of Mathematind Computer Science 2010, 1(9), 17-27.
Grzybowski A.Z., Estimating priority weights - amptonization procedures based on Saaty's
eigenvalue method, private communication, 2010.



