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Abstract. The dual phase lag model (DPLM) based on the géimned form of Fourier law,

in particular the introduction of two ‘delay time@elaxation timety and thermalization
time 11) leads to the considered form of energy equafibiis equation should be applied in
the case of microscale heat transfer modeling.aiiqular, DPLM constitutes a good ap-
proximation of thermal processes which are charaete by extremely short duration (e.g.
ultrafast laser pulse), extreme temperature gréslimmd geometrical features of the domain
considered (e.g. thin metal film). In this papdw tdentification problem of two of the
above mentioned positive constanjsty is discussed and the thermal processes proceeding
in the domain of thin metal film subjected to adabeam are analyzed. At the stage of
computations connected with the identification peaf solution, evolutionary algorithms
are used. To solve the problem, additional inforomatoncerning the transient temperature
distribution on a metal film surface is assumetdedknown.

Introduction
Let us consider the following form of generalizemliRer law

q(x,t+rq)=—kDT(x, t 1) (1)

whereq is the unitary heat flux) is the thermal conductivity]T is the tempera-
ture gradientz,, tr correspond to the relaxation time, which is theamgéme for
electrons to change their energy states and thengtization time, which is the
mean time required for electrons and lattice t@meaguilibrium

The DPLM equation can be, among others, reduced ftite considerations
concerning the parabolic two-temperature model][IFBis model involves two
energy equations determining the heat transfdmdéretectron gas and metal lattice.
The equations creating the model discussed (icdke of metals) are of the form

c.(T.) aa-l;"‘:D[xe(TJD H dT. 1) (2)




190 B. Mochnacki, M. Paruch

6 (1)50=6(T-1), ©
whereTe = Tg(X, t), T = Ti(x, t) are the temperatures of the electrons and lattice
respectively,c«(Te), ¢(T,) are the volumetric specific heatg(Te), M(T,) are the
thermal conductivitiesG is the coupling factor [1], which characterizes #nergy
exchange between phonons and electrons [4]. Eaqusafig, (2) under the assump-
tion that volumetric specific heats andc, are constant values, using a certain
elimination technique can be substituted by a simgjuation containing a higher-
order mixed derivative in both time and space. Feguation (2) it results that

oT,
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T=T+1 -1 4
3 ot (4)

Putting (3) into (1), one has
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finally, one obtains
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whereT (x, t) = T, (x, t) is the macroscopic lattice temperature 5% ¢ + c. is the
effective volumetric specific heat resulting frohetserial assembly of electrons
and phonons and= 1. [6].

In Figure 1 (see [11]), the numerical solution amd on the basis of two tem-
perature parabolic models is shown (equationsrfd)(8)). In particular, the heat-
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ing/cooling curves refer to the surface of domdii) 6ubjected to a laser pulse.
The time for which the electrons and lattice terapges are equalized correspond
to the thermalization ong. Hence, it seems that the physical interpretadiotiis
parameter is self-evident.
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Fig. 1. Changes of surface temperatures

The other approach to DPLM formulation is also gussand the details of the
mathematical considerations leading to the samategucan be found in [3].

1. Internal heat source

In this paper the thermal interactions betweenragateheating (laser beam) and
the domain of metal film are taken into accounthmy introduction of a additional
term supplementing the DPLM, in particular the fiime corresponding to volu-
metric internal heat source®(x, t) is considered. This approach is often used [2]
while the new form of energy equation in whiQlx, t) appears is the following:

OT(x t 0°T(x t
c{ é’t( ) ie, aEZX )}:D[ﬂ T(% 9] o
o0T(x t) 0 Q(x 1
TTD[XT} Q(x, ty TqT

The formula determining the capacity of internahthsources is applied (1D prob-
lem [7, 8]) takes the form of

El—R
T t o

p

2
Lo _}_#(t—th)

10
s (10)

Q(x t) =
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wherel, is the laser intensity which is defined as thaltehergy carried by a laser
pulse per unit cross-section of the laser bdgrm,the characteristic time of a laser
pulse,d is the characteristic transparent length of iaseti phonons called the
absorption depthnd Ris the surface reflectivityy = 4 In2.The local and tempo-
rary value ofQ results from distanca& between the surface subjected to laser
action and the point considered. Using this apgrpte no-flux boundary condi-
tions forx = 0 andx = L should be assumed.

In Figure 2, the metal film subjected to a lasarbas shown, at the same time,
the geometrical features of the domain considellesvs one to treat the problem

as a 1D one.
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Fig. 2. Domain considered

2. Numerical solution based on FDM (direct problem)

At the stage of numerical modeling, the finite eiffnce method in the version
proposed by Mochnacki and Suchy [9] has been uBeetefore, the following
basic energy equation (1D problem) is considered

C{aT(x,t)+T 62T(xt)}:i{ka T( X‘)}r

ot 4 at? 0X oX
(x1) 29(x o

0 9| 0T(xt X

TTE&{X 2 x }Q(X’t)”‘* ot

The differential mesh is created as a Cartesiadymtoof spatial, and timeA;
meshes. The time grid is defined as follows:

A .

oottt Tt T <t <l <tF <o (12)

while the spatial mesh is shown in Figure 3.
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It is visible that the 'boundary' nodes are located distance of 0.6 from the real
boundaries (this type of discretization assuresrg simple and exact approximation
of boundary conditions [9]).
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Fig. 3. Spatial mesh

The FDM approximation of the spatial differentigdevator can be taken as fol-
lows [9]:

o (. aT) _T,\-T' T, -T

— | A—— :HT;qJHl +——1 qu_l (13)
ax( aXl I?ﬂ R—l

where¥;. ;= ¥;- 1= 1h are the mesh shape functions, while

4 _05h  0.5h 4_ 05 05,

S B o
are the thermal resistances between m@aofe adjoining nodest 1,i — 1. Indexf in
formula (13) shows that the implicit differentiathreme will be used here, at the
same time, the thermal conductivities are takerifoet’ ™ to obtain the linear form
of final FDM equations. The FDM approximation ofuatjon (11) for transition
t"* _ t" is of the form

-I—if _-Ef—l+c Tf _2Tf—l+-i|—f—2_
£ T =

At a (At)?
Tiil_-Ef +T11_qu_j +TT(iil_in LIJ +iT£1_iT‘ LIJ j_ (15)

C
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and the last formula can be written as follows
ATL+BT +CT,.=
DT +ET+FT M+ (ATE)Z - (16)
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where
A :Lp_if-fl 1+ | C :lp_iﬂ_l 1+ (17)
cR'; At cR; At
1 T
B=——|1+-%|-A- 18
. At( Atj \ —G (18)
= T = T (19)
cR* At cR'At
1 21
=-—|1+=2|-D -F 20
E At[ Atj -k (20)
Finally,
ATL+BT +CT,= (21)
where
G'=DT'+ET'+FT '+
f
W iz Q_%[0Q 22)
(m)2 ' c clat)

The same equations are accepted for the nodestoltise boundaries. It is enough
to assume that the thermal resistances in directiorthe boundary' are sufficient-
ly big (e.g. 18% and then the non-flux condition is taken into@aut. The starting
point of the numerical simulation process resuftanf the initial conditions, in
particularTiozTil =Ty,i =1, 2, ..,N. As was mentioned, the system of FDM
equations (16) has been solved using the Thomasrithlgn [9] for a three-
diagonal linear system of algebraic equations.

3. Inverse problem

To solve the inverse problem, the least squarésrion is applied

S{ry 7)== 33T - ) 29

i=1f=1

where T, and T :T(x, t‘) are the measured and estimated temperatures, re-
spectively andM is the number of sensors. The minimum of functid@8) has
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been found using evolutionary algorithms. Hence, direct problems have been
solved and the results allow one to determineithe tependent surface tempera-
ture k = 0). Because the temperature history resultiogfthe numerical solution
for the basic input data is very close to the expental ones quoted in [10] - Fig-
ure 4, therefore this undisturbed numerical solut®assumed to be a base of the
identification problem solution (‘measured surfdeenperature’). Therefore, the
laser parameters determining the capacity of imlesource functiorQ(x, t) and
also the thermal conductivity and volumetric spedifeat of gold are known, pa-
rameterst,, Tr should be determined (from the practical standptiet experi-
mental estimation ofy, Tr is not easy).
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Fig. 4. Comparison to experimental data [10]

In Figures 5 and 6, an example of a direct protdetation is shown. The layer
is subjected to a short-pulse laser irradiation sehparameters are equal to:
R = 0.93 (reflectivity),lo = 13.7 J/m (intensity),t,= 0.1ps = 10"%s (time of laser
pulse),d6 = 15.3 nm (absorption depth). The following partere of thin gold film
are assumed: thermal conductivity= 317 W/(mK), volumetric specific heat
c = 2.4897 MJ/(rK), relaxation timery = 8.5ps, thermalization timer = 90ps.
The initial temperature equalg = 20°C (see [11-13]).

Using the algorithm presented in the previchapter under the assumption
thatN = 200 andAt = 0.005ps, the transient temperature field has been found.
In Figure 5 the temperature profiles are shown|enBigure 6 illustrates the courses
of heating (cooling) curves at points selected ftbendomain considered.

The identification of ‘delay’ times has been dorsing evolutionary algorithms. In
Table 1 the algorithm parameters are collected.réhelts obtained are presented in
Table 2 and they are quite satisfactory.
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Fig. 5. Temperature profiles
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Fig. 6. Cooling (heating) curves
Table 1
Evolutionary algorithm parameters
Prob. of | Prob. of non- Prob. of
No. of gener- Number uniform | uniform muta-|  arithmetic | ©roP- Of
ations of chromosomes . tion cloning
mutation crossover
50 20 20% 30% 50% 10%
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Table 2
Result of computationsusing EA
Design variable Exact value Found value Error, %
Tq 8.5107% 8.499994107" 0
Tr 901072 89.99994107* 0

The application of evolutionary algorithms for tlkeentification of problems
solutions is (from the numerical point of view)iimé-consuming one. On the other
hand however, the mathematical and numerical pnableonnected with adequate
algorithm construction seem to be essentially sempt comparison to the very
popular gradient methods.
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