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Abstract. The dual phase lag model (DPLM) based on the generalized form of Fourier law, 
in particular the introduction of two ‘delay times’ (relaxation time τq and thermalization 
time τT) leads to the considered form of energy equation. This equation should be applied in 
the case of microscale heat transfer modeling. In particular, DPLM constitutes a good ap-
proximation of thermal processes which are characterized by extremely short duration (e.g. 
ultrafast laser pulse), extreme temperature gradients and geometrical features of the domain 
considered (e.g. thin metal film). In this paper, the identification problem of  two of the 
above mentioned positive constants τq, τT is discussed and the thermal processes proceeding 
in the domain of  thin metal film subjected to a laser beam are analyzed. At the stage of 
computations connected with the identification problem solution, evolutionary algorithms 
are used. To solve the problem, additional information concerning the transient temperature 
distribution on a metal film surface is assumed to be known. 

Introduction 

Let us consider the following form of generalized Fourier law 

 ( ) ( ), λ ,q Tx t T x tτ τ+ = − ∇ +q  (1) 

where q is the unitary heat flux, λ is the thermal conductivity, ∇ T is the tempera-
ture gradient, τq, τT correspond to the relaxation time, which is the mean time for 
electrons to change their energy states and the thermalization time, which is the 
mean time required for electrons and lattice to reach equilibrium.  

The DPLM equation can be, among others, reduced from the considerations 
concerning the parabolic two-temperature model [1-3]. This model involves two 
energy equations determining the heat transfer in the electron gas and metal lattice. 
The equations creating the model discussed (in the case of metals) are of the form 
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where Te = Te(x, t), Tl = Tl(x, t) are the temperatures of the electrons and lattice, 
respectively, ce(Te), cl(Tl ) are the volumetric specific heats, λe(Te), λl(Tl) are the 
thermal conductivities, G is the coupling factor [1], which characterizes the energy 
exchange between phonons and electrons [4]. Equations (1), (2) under the assump-
tion that volumetric specific heats ce and cl are constant values, using a certain 
elimination technique can be substituted by a single equation containing a higher-
order mixed derivative in both time and space. From equation (2) it results that 
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Putting (3) into (1), one has 

 ( ) ( )
2

2
λ λ

l l l l l
e e l e l l

T c T c T
c T T c

t G t G t t

   ∂ ∂ ∂∂+ = ∇ ∇ + ∇ ∇ −   ∂ ∂ ∂ ∂  
 (5) 

this means 
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Denoting 
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finally, one obtains 
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where T (x, t) = Tl (x, t) is the macroscopic lattice temperature [5], c  = cl  + ce  is the 
effective volumetric specific heat resulting from the serial assembly of electrons 
and phonons and λ = λ e [6]. 

In Figure 1 (see [11]), the numerical solution obtained on the basis of two tem-
perature parabolic models is shown (equations (2) and (3)). In particular, the heat-
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ing/cooling curves refer to the surface of domain (Ti) subjected to a laser pulse. 
The time for which the electrons and lattice temperatures are equalized correspond 
to the thermalization one τT. Hence, it seems that the physical interpretation of this 
parameter is self-evident.  

 

 
Fig. 1. Changes of surface temperatures 

The other approach to DPLM formulation is also possible and the details of the 
mathematical considerations leading to the same equation can be found in [3]. 

1. Internal heat source 

In this paper the thermal interactions between external heating (laser beam) and 
the domain of metal film are taken into account by the introduction of a additional 
term supplementing the DPLM, in particular the function corresponding to volu-
metric internal heat sources, Q(x, t) is considered. This approach is often used [2] 
while the new form of energy equation in which Q(x, t) appears is the following: 
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The formula determining the capacity of internal heat sources is applied (1D prob-
lem [7, 8]) takes the form of 
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where I0 is the laser intensity which is defined as the total energy carried by a laser 
pulse per unit cross-section of the laser beam, tp is the characteristic time of a laser 
pulse, δ is the characteristic transparent length of irradiated phonons called the 
absorption depth and  R is the surface reflectivity, µ = 4 ln2. The local and tempo-
rary value of Q results from distance x between the surface subjected to laser  
action and the point considered. Using this approach, the no-flux boundary condi-
tions for x = 0 and x = L should be assumed.  

In Figure 2, the metal film subjected to a laser beam is shown, at the same time, 
the geometrical features of the domain considered allows one to treat the problem 
as a 1D one. 

 
Fig. 2. Domain considered 

2. Numerical solution based on FDM (direct problem) 

At the stage of numerical modeling, the finite difference method in the version 
proposed by Mochnacki and Suchy [9] has been used. Therefore, the following 
basic energy equation (1D problem) is considered 
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The differential mesh is created as a Cartesian product of spatial ∆h and time ∆t 
meshes. The time grid is defined as follows: 

 0 1 2 1: ... ...f f f F
t t t t t t t− −∆ < < < < < < < < ∞ (12) 

while the spatial mesh is shown in Figure 3. 
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It is visible that the 'boundary' nodes are located at a distance of 0.5 h from the real 
boundaries (this type of discretization assures a very simple and exact approximation 
of boundary conditions [9]). 
 

 
Fig. 3. Spatial mesh 

The FDM approximation of the spatial differential operator can be taken as fol-
lows [9]: 
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where Ψi + 1 = Ψi − 1 = 1/h are the mesh shape functions, while 
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are the thermal resistances between node i and adjoining nodes i + 1, i − 1. Index f in 
formula (13) shows that the implicit differential scheme will be used here, at the 
same time, the thermal conductivities are taken for time t f −1 to obtain the linear form 
of final FDM equations. The FDM approximation of equation (11) for transition 
t f −1 → t f  is of the form 
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and the last formula can be written as follows 
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where 
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Finally, 
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The same equations are accepted for the nodes close to the boundaries. It is enough 
to assume that the thermal resistances in directions 'to the boundary' are sufficient-
ly big (e.g. 1010) and then the non-flux condition is taken into account. The starting 
point of the numerical simulation process results from the initial conditions, in 
particular Ti

0 = Ti
1  = T0 , i = 1, 2, ..., N. As was mentioned, the system of FDM 

equations (16) has been solved using the Thomas algorithm [9] for a three-
diagonal linear system of algebraic equations. 

3. Inverse problem 

To solve the inverse problem, the least squares criterion is applied 
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d iT  and ( ),f f

i iT T x t=  are the measured and estimated temperatures, re-

spectively and M is the number of sensors. The minimum of functional (23) has 
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been found using evolutionary algorithms. Hence, the direct problems have been 
solved and the results allow one to determine the time dependent surface tempera-
ture (x = 0). Because the temperature history resulting from the numerical solution 
for the basic input data is very close to the experimental ones quoted in [10] - Fig-
ure 4, therefore this undisturbed numerical solution is assumed to be a base of the 
identification problem solution (‘measured surface temperature’). Therefore, the 
laser parameters determining the capacity of internal source function Q(x, t) and 
also the thermal conductivity and volumetric specific heat of gold are known, pa-
rameters τq, τT should be determined (from the practical standpoint the experi-
mental estimation of τq, τT  is not easy). 
 

 
Fig. 4. Comparison to experimental data [10] 

In Figures 5 and 6, an example of a direct problem solution is shown. The layer 
is subjected to a short-pulse laser irradiation whose parameters are equal to:  
R = 0.93 (reflectivity), I0 = 13.7 J/m2 (intensity), tp = 0.1 ps = 10−13 s (time of laser 
pulse), δ = 15.3 nm (absorption depth). The following parameters of thin gold film 
are assumed: thermal conductivity λ = 317 W/(mK), volumetric specific heat 
c = 2.4897 MJ/(m3K), relaxation time τq = 8.5 ps, thermalization time τT  = 90 ps. 
The initial temperature equals T0 = 20°C (see [11-13]). 

Using the  algorithm  presented  in  the  previous chapter  under  the assumption 
that N  = 200 and ∆t = 0.005 ps, the transient temperature field has been found.  
In Figure 5 the temperature profiles are shown, while Figure 6 illustrates the courses 
of heating (cooling) curves at points selected from the domain considered. 

The identification of ‘delay’ times has been done using evolutionary algorithms. In 
Table 1 the algorithm parameters are collected. The results obtained are presented in 
Table 2 and they are quite satisfactory. 
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Fig. 5. Temperature profiles 

 
Fig. 6. Cooling (heating) curves 

Table 1 

Evolutionary algorithm parameters 

No. of gener-
ations 

Number  
of chromosomes 

Prob. of 
uniform 
mutation 

Prob. of non-
uniform muta-

tion 

Prob. of 
arithmetic 
crossover 

Prob. of 
cloning 

50 20 20% 30% 50% 10% 
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Table 2 

Result of computations using EA 

Design variable Exact value Found value Error, % 

τq 8.5⋅10−−−−12 8.499999⋅10−−−−12 0 

τT 90⋅10−−−−12 89.99999⋅10−−−−12 0 

 
The application of evolutionary algorithms for the identification of problems 

solutions is (from the numerical point of view) a time-consuming one. On the other 
hand however, the mathematical and numerical problems connected with adequate 
algorithm construction seem to be essentially simpler in comparison to the very 
popular gradient methods. 
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