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Abstract. In this paper, the results of numerical studieshendivergence and flutter insta-
bility and vibration of a geometrically nonlineamlemn subjected to generalized load are
presented. The system is loaded by axially apmigdrnal forceP. The direction of action
of the force is dependent on follower factorThe Hamilton principle was used to formu-
late the boundary problem. Due to the geometridinearity, the solution to the problem
was performed by means of the perturbation metfibd. main purpose of this paper is to
investigate the influence of the location of thaakr on divergence and flutter loading as
well as natural vibration frequency. The presentesllts of numerical calculations also
concern the influence of rotational spring stiffnesd follower factor on the investigated
parameters.

Introduction

The study on natural vibration, divergence andéluinstability of geometrical-
ly nonlinear slender systems subjected to genedliaading have been the sub-
ject of numerous scientific investigations. Thestfipapers in this field already
appeared in the 1960s. Among others, the influericbe follower factor, asym-
metry of the bending rigidity coefficient and stiéfss of the supporting springs in
the examined systems on the type of instabilitiyrbation (divergence) and criti-
cal (flutter) loading were investigated.

In this study, the problem of the natural vibratwina geometrically nonlinear
column consisting of three rods with divergence tumtler instability is taken into
account. In the investigated system, the first elenis a continuous rod and rods
two and three are connected by a pin, strengthéyed rotational spring with
stiffnessC. In the physical system, the pin and the springrepresent the internal
crack or connection of two rods made of two différenaterials. The scientific
research of columns with cracks were performed bil& [1] and Wang [2].The
investigated column is loaded by external forceThe direction of action of the
force is dependant on follower factpr The numerical calculations of divergence
and flutter instability were performed by Przybylg¥, and Tomski [4]. The prob-
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lem of instability and natural vibration has beennfulated by means of Hamil-
ton’s principle [5]. Due to geometric nonlineargjehe solution to the problem has
been performed by use of the small parameter mdlod’he main purpose of
this study is to investigate the influence of tbealtion of a crack on the diver-
gence and flutter loading and natural vibratiomérency. The presented results of
the numerical calculations also concern the infbeeof the rotational spring stiff-
ness and follower factaron the investigated parameters.

1. Formulation of the problem
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Fig. 1. Nonlinear system under consideration Fig. 2. Exemplary models of real life
subjected to generalized load structures

In Figure 1 the nonlinear cantilever column undwerestigation is presented.
Memberl consists of rod (1), and membiérelements are rods (2) and (3) con-
nected by a pin strengthened by a rotational sfraiiffnessC. The smaller val-
ue of C, the greater the crack. The investigated systdoaided by a concentrated
axially applied forceP at the point of connection of rods (1) and (3). Tedflec-
tion angles of these rods are identical. The dwacof action of the force is de-
pendant on follower factog. The rods have length =1,2,3 respectively. The

physical structures of the considered system asevishin Figure 2: a) two coaxial
tubes, b) tube and rod, c) flat frame.
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The problem presented in this paper has been fateuilby means of the
Hamilton principle:

5]2 (T-V-L,)dt=0 (1)

L'}

where kineticT and potentiaV energy and work,, of non-conservative forces are
expressed by the following formulas:
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Introducing kinetic (2) and potential (3) energydamork (4) into (1) and per-
forming the variational and integration operaticasd assuming that virtual longi-
tudinal and transversal displacements iferl, 2,3 are arbitrary and independent
for 0 <x < |;, the following equations of motion in a transverdakction were
obtained:

e 3 I )EA [[aui(x,t)+;(aW(x,t>J]aW.(x,t)] o OW00)

ox' 0% 0 X, ot>
i=1,2,3 (5)
The compressive axial force is defined as follows:

_ o afouen  fowx ) o
5(0)= EA[ ™ +2[ o U' 12,3 ©

Introducing the definition of axial force (6) intbe equation of motion, equation
(5) has the form:
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The axial displacement in each rod is expressdtidojormula:

U (x,t) =~ S(t)x_J{GWX t} dx 1=1,2,3 (8)

Introducing geometrical boundary conditions inte thkariational equation:

W(0.) =W (1), =W(0.8) =W (o,t), =00 W (1), =W (),

W2(|2’t)=W3(O’t)’ 1('1’t)_ 3(3' )’ Ul(O,t)ZUZ(O,t)=0,

U2(|2,t)=U3(0,t), U1(|1,t)=U3(|3,t). (9 a-k)

the following set of natural boundary conditionsgebtained:
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5 =S, S+5,=P (10 a-g)

The small parametesr method [6] has been used to solve the boundary-prob
lem. According to this method, the longitudinal amdnsversal displacements,
axial force and vibration frequency of each rodwaritten in a power series:

WED)=D e (61 O™ 4 (E.1)=u,(@)+ Y67 u,, (£.1)+ O™

n=1
N N
ki(7) =k, + > €K (T) +O(e™N™)  of =" + > £7'w,,” +O(e*"") (1la-d)
n=1 n=1
The magnitudes obtained from equations (1la-d)rdareduced into the equa-

tion of motion, axial force and boundary conditiomfen, the terms are grouped
at the same power of small parameterwhich leads to an infinite sequence of
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equations. The solution presented in this paperoktained on the basis of a sys-
tem of equations with the small parameter in the fiower.

2. Results of numerical calculations

At the beginning, the relation curves foqgeersus natural vibration frequency
w for different a follower factor and crack locatibas been presented (Figs 3 and
4). The continuous curves stand for the divergémsbility and the dotted curves
stand for the flutter instability. With the incréag value of follower factor, the
increase of the maximum magnitude of the exteroadl Ihas been achieved irre-
spective of the location of the crack. The craalatmn changes the natural vibra-
tion frequency of the system. It has been conclubatif the crack is located near
the free end of the column, the point at which distem loses instability through
flutter occurs for a smaller follower factor valdeor example, when the stiffness
of the rotational spring is equal to one and theipilocated in the middle of the
column, the flutter instability occurs for angreater than 0.5, while for location
d, = 0.7, the flutter begins with angreater than 0.4. The point at which the natu-
ral vibration frequency curves cross each otheratss been found. At this point
the force and vibration frequency does not depentthe follower factor.

10.0 7 12.0

Fig. 3. Influence of follower factoy on Fig. 4. Influence of follower factoy on
natural vibrations¢ = 1,d, = 0.5,r,,= 0.76 natural vibrationsg = 1,d, = 0.7,r,,= 0.76

The next step in the numerical calculations proyeas to investigate the loca-
tion of the crack on the shape modes. The sampldtseof this study are present-
ed in Table 1.
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Table 1
Influence of location of crack on shape mode, ¢ = 1
d2 =0.3 d2 =0.5
Wi Wi
¢ ¢
d2 =0.7 d2 =0.9
Wi Wi
¢ ¢

It has been concluded that for 5, the location of the pin has no influence on
the shape modes, while for smaltevalues, the shape modes vary on each other.
As shown in Table 1, whem= 1, translation of the crack along the colummgth
changes the shape modes. When the crack is lonatadthe free end of the sys-
tem, the shape mode is close to the linear sydteam,is why the external load
value in this location is the greatest.

The relation force-crack location for a differeqriag stiffness and follower
factor is presented in Figures 5 and 6.

4.0
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Fig. 5. Influence of crack location on maximum Idaddifferent spring stiffness,
n=0,r,=1,r,=0.76
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dz

Fig. 6. Influence of crack location on maximum Idaddifferent spring stiffness,
n=0.3,r,=1,r,=0.76

When the rotational spring stiffness tends towandisity, the change in loca-
tion of the pin has no influence on the bearingac#y of the system. Reduction of
the stiffness of the connection between rods 23aup to 5, with translation of the
pin along the columns length from the fixed end topfree one causes the
capacity of the system to stabilize. Further reidmctof connection stiffness
c allows one to obtain greater load changes undeintheence of the pin localiza-
tion. With ¢ = 0, the bearing capacity of the column is thelksia Despite chang-
es of the rotational spring stiffness which congacds 2 and 3, the maximum
external load value stabilizes when the pin is tedaclose to the free end of the
column.

Conclusions

In this paper the influence of the crack locatitong the column length on the
divergence and flutter load and natural vibratibra @eometrically nonlinear co-
lumn subjected to generalized loBds presented. After analysis of the results of
numerical calculations it was found that:

— For c < 5 the location of the pin has a great influennethe critical loading
and natural vibration frequency. By changing theatmn of the pin, instability
regions can be controlled.

— When the crack is located near the free end otthemn, the influence of the
spring stiffness on the maximum loading and natuiatation frequency is
negligible.

— There is a value of rotational spring stiffnessvabwhich the location of the
pin has no influence on the investigated parameidns effect occurs for
c>5.
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— Points in which, irrespective of the follower fagtthe natural vibration fre-
quency is constant were found.

— It has been concluded that the influence on the tfpinstability (divergence
or flutter) also has the direction of action of tweternal load, which is de-
pendent on follower factor.

Nomenclature

A Cross section area rn  Bending stiffness rati&;J./ E»J,

E Young's modulus row  Bending stiffness rati&,J,/ EzJz

Ji Area moment of inertia ki Non-dimensional axial forcg%/E;J

P External force w;  Non-dimensional transversal displacemit

C Rotational spring stiffness U, Non-dimensional axial displacemeut|

U; Axial displacement di Non-dimensional length of a rdd |

W,  Transversal displacement &, r Non-dimensional space and time variable, respdgtive
n Follower factor c Non-dimensional spring stiffne€3/(E;J,+ E»Jy)
Di Density of a material ? Non-dimensional natural frequen&¥(piAlY EJ)
0, Natural vibration frequency p Non-dimensional external lodl%(E;J;+ E,J,)
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