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Abstract. The Laplace equation (2D problem) supplemented by boundary conditions is 
analyzed. To estimate the changes of temperature in the 2D domain due to the change of 
local geometry of the boundary, the implicit method of sensitivity analysis is used. In the 
final part of the paper, the example of numerical computations is shown. 

Introduction 

To estimate the changes of temperature in a 2D domain due to the change of lo-
cal geometry of the boundary, the methods of sensitivity analysis can be applied 
[1-5]. There are two basic approaches to sensitivity analysis using boundary ele-
ment formulation: the continuous approach and the discretized one [6]. In the con-
tinuous approach (explicit differentiation method), the analytical expressions for 
sensitivities are derived and then they are calculated numerically using the BEM. 
They have the form of boundary integrals with integrands that depend only on the 
variables of the primary as well as additional problems. The implicit differentiation 
method, which belongs to the discretized approach, is based on the differentiation 
of algebraic boundary element matrix equations. The derivatives of boundary ele-
ment system matrices can be calculated either analytically or semi-analytically. In 
the paper the implicit differentiation method of sensitivity analysis for a steady 
state problem is presented 
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where λ  [W/(mK)] is the thermal conductivity, T is the temperature and x, y  
are the geometrical co-ordinates. Equation (1) is supplemented by boundary condi-
tions 
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where Tb is the known boundary temperature, qb is the known boundary heat flux, 
α [W/(m2 K)] is the heat transfer coefficient and T∞ is the ambient temperature. 

1. Boundary element method for Laplace equation 

The boundary integral equation for the problem described by equations (1), (2) 
is the following [7, 8]  
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where ( , ) (0,1)ξ η ∈B is the coefficient connected with the local shape of the 

boundary, (ξ,η) is the observation point, ( , )  ( , ),   ( , , , )∗= −λ ⋅ ∇ ξ ηq x y T x y T x yn  is 

the fundamental solution 
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where r is the distance between points (ξ,η) and (x,y) 

 2 2( ) ( )= − ξ + − ηr x y            (5) 

Function ( , , , )∗ ξ ηq x y is defined as follows: 

 ( , , , )  ( , , , )∗ ∗ξ η = −λ ⋅ ∇ ξ ηq x y T x yn   (6) 

and it can be calculated analytically 
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where 

 ( ) ( )= − ξ + − ηx yd x n y n   (8) 

while nx, ny are the directional cosines of normal outward vector n. 
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2. Numerical realization of  boundary element method 

In numerical realization of the BEM, the boundary is divided into N boundary 
elements and integrals appearing in equation (3) are substituted by the sums of 
integrals over these elements 
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For linear boundary element Γj, it is assumed that 
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where 
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are the shape functions, [ 1,1]θ∈ −  and ( , ),  ( , )p p k k
j j j jx y x y are the co-ordinates of 

the beginning and end of element Γj. 
The integrals appearing in equation (9) can be written in the form of [7, 8] 
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and 
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where 
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is the length of element Γj. 
Taking into account dependencies (4), (7), one has 
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It should be pointed out that if (ξi,ηi) is the beginning of boundary element Γj, 
this means (ξi,ηi) = (xj

p,yj
p) then 
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while if (ξi,ηi) is the end of boundary element Γj: (ξi,ηi) = (xj
k, yj

k ) then 
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As is well known, in the final system of algebraic equations, the values of tem-
peratures or heat fluxes are connected with the boundary nodes. If the following 
numeration of boundary nodes r = 1, 2, ..., R is accepted, then for i = 1, 2, ..., R one 
obtains the system of equations (c.f. equation (9)) 
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where for single node r being the end of boundary element Γj and being the 
beginning of boundary element Γj+1 (Fig. 1) we have 
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Fig. 1. Single and double nodes 

The system of equations (26) can be written in the form of 
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It should be pointed out that it is convenient to calculate values Hi i using the 
formula 
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Taking into account boundary conditions (2), system of equations (30) should be 
rebuilt to the form AY = F. The solution of this system allows one to determine the 
“missing” boundary temperatures and heat fluxes. Next, the temperatures in an 
optional set of internal nodes can be calculated using formula 
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3. Implicit differentiation method of shape sensitivity analysis 

We assume that b is the shape parameter, this means b corresponds to the x or y 
coordinate of one of the boundary nodes. The implicit differentiation method [6, 3] 
starts with the algebraic system of equations (30). The differentiation of (30) with 
respect to b leads to the following system of equations 
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The differentiation of boundary conditions (2) gives 
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Therefore, this approach of shape sensitivity analysis is connected with the dif-
ferentiation of elements of matrices G and H. 
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Taking into account dependencies (19), (20), one has 
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Next, using formulas (21), (22), one obtains 
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and 
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In the case when shape parameter b corresponds to node (ξi, ηi) = (xj
p , yj

p) or to 
node (ξi, ηi) = (xj

k , yj
k), then formulas (24), (25) should be differentiated with re-

spect to b.  
The way of creating matrices ∂Gi r /∂b and ∂Hi r /∂b is similar to matrices Gir and 

Hir (c.f. equations (27), (28)) and when, for example, b = xr, where (xr, yr) is a sin-
gle boundary node, the non-zero elements of these matrices appear in columns 
r − 1, r, r +1 and in row r. 

Additionally (c.f. equation (32)) 
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After solving the system of equations (35), the values of function U at optional 
internal points can be calculated using formula 
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It should be pointed out that using Taylor expansion 
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one has 
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where ∆b is the perturbation of parameter b. Hence, on the basis of formula (48) 
the change of temperature due to the change of parameter b can be estimated. 

4. Example of computations 

A square of dimensions 0.05×0.05 m has been considered. Thermal conductivi-
ty equals λ = 1 W/(mK). On the bottom boundary, Neumann condition qb =  
= –104  W/m2 has been assumed, on the remaining parts of the boundary Dirichlet 
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condition Tb = 600°C has been accepted. The boundary has been divided into 8 
linear boundary elements (Fig. 2) and 10 boundary nodes have been distinguished 
(two double boundary nodes).  

 
 
 
 
 
     
 
 
 
 
 
 

 
 
 

 
Fig. 3. Discretization 

 
 
 

Fig. 3. Discretization 

The solution of the basic problem (equations (1), (2)) is the following: 
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Τ q  (49) 

For shape parameter b1 = x6, one has U2 = 1.02 and U13 = 4.67, while for b2 = y6  
U2 = 11.89 and U13 = 29.77. Therefore, under the assumption that ∆b = 0.01 m, the 
change of temperature at node 2 due to the change of parameter b1 is equal to 
0.02°C, while the change of temperature at node 2 due to the change of parameter 
b2 is equal to 0.24°C (c.f. Expression (48)). 
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The temperature at point 13 changes from 630.96 to 631.01 for parameter b1 
while for parameter b2 from 630.96 to 631.26. 

The temperature distribution is shown in Figure 4. Figures 5, 6 illustrate the 
distributions of sensitivity functions DT/Db1 and DT/Db2, respectively. 

 

 
Fig. 4. Temperature distribution 

         

Fig. 5. Distribution of DT/Db1 

Conclusion 

An implicit approach of shape sensitivity analysis coupled with the boundary 
element method has been discussed. Linear boundary elements have been used and 
then it is possible, in a simple way, to change the local geometry of  the boundary. To 
estimate the change of temperature due to the perturbation of a shape parameter, the 
Taylor series containing the sensitivity function has been applied.  
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In this paper the steady state has been considered but in future a similar approach 
will be used for transient heat transfer. 

 

                                 

Fig. 6. Distribution of DT/Db2 
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