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Abstract. We consider a variational formulation of a nonconvex one-dimensional Neumann 
problem. The method of obtaining infimum of a relevant functional is based on a general 
theorem attributed to Z. Naniewicz, of the minimization of a certain class of nonconvex 
functionals. 

Introduction 

In many practical problems, for instance in nonlinear elasticity, we often mini-
mize integral functional  of the form 

  

where  is a bounded domain,  is a function from Sobolev space 
, (i.e.  and its first distributional derivative belong to ) and 

 is the Carathéodory function. This latter demand means 
that we want   to be measurable with respect to the first variable and it is contin-
uous with respect to the second and third variables. 

The idea of the direct method of minimizing such functionals is to consider 
a minimizing sequence  that is a sequence such that 

 . 

What we have to do is to show that  admits subsequence  convergent 
(in a suitable topology) to some point  and establish the lower semi-
continuity of  (with respect to that topology). Then  is a minimum of  because 

 

The crucial and  most difficult task here is to prove the lower semicontinuity of I.  
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It is known that if  is the Carathéodory and fulfils suitable growth conditions, 
then the lower semicontinuity of I is equivalent to the so-called quasiconvexity of 
. We refer to [1] for details. However, if  is not quasiconvex, the above proce-

dure is not applicable. One of the most popular methods is to consider relaxed 
problems: we quasiconvexify the integrand  The infimum of the relaxed func-
tional remains the same, but some important information concerning the oscillato-
ry nature of the minimizing sequences is lost. This is a serious drawback because 
from the applicational point of view, the detailed structure of minimizing sequen-
ces is often as important as the minimizers themselves. Another problem is that in 
general it is very difficult to find the relaxation formula for a given nonconvex 
functional. 

In 2001 Z. Naniewicz [2] proved the theorem enabling us to seek minima of 
functionals with integrands being a minimum of convex functions. He also ana-
lyzed the one-dimensional nonconvex Dirichlet problem. In this paper we use his 
theorem to analyze the one-dimensional nonconvex Neumann problem.  

1. Minimization theorem 

Let us first introduce some notations. By  we will denote the bounded domain 
in  with the Lipschitz continuous boundary.  will stand for the Sobo-
lev space of all the functions that are square integrable together with their first 
partial distributional derivatives. We will also use the abbreviations a.a. and a.e. 
instead of  almost all and almost everywhere (with respect to the Lebesgue meas-
ure) respectively. For  we will consider the functional 

  (1) 

where  are such that: 
   
  are measurable; 

 functions 

 

          are  continuous; 

    
           
          where  and  are integrable functions in  are positive  

constants.  
Notice also that the left hand side of condition  implies the coercivity of  

the functional  
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We will further write such integrals in the form  to simplify the no-
tation. 
 

Remark 
In a one-dimensional case, if  is the position of the particle moving 

with the velocity  and , then functional I describes 
the  kinetic energy of that particle. 

Now we state the definition of the quasiconvexity. Let  be a bounded 
domain,  - the space of all vector functions  such that for 
all  function  has a compact support in  and is continuous with its 
first distributional derivative. 

 

Definition 1  
Let . We say that  is quasiconvex if for every matrix , 

every  and every  described above, the following inequality holds: 

  

where meas  stands for the Lebesgue measure of the set . 
 

Remark  
(a) The most typical example of a quasiconvex function is the convex function.  
(b)  In the scalar case ( ), the notions of convexity and quasicon-

vexity are equivalent.  
(c) The notion of quasiconvexity was introduced by Charles B. Morley in 1952. 

For it turned out that the assumption of the convexity of the integrand of  
energy functional  is inconsistent with the principle of the material frame - 
indifference. See [3] for a review of the topic. 

We consider the minimization problem of the form 

   

where  is given by (1): 

  

It is known that if  fulfils conditions :  
, then the sequential weak lower semicontinuity of  is 
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equivalent to the quasiconvexity of  with respect to the third variable. However, 
the integrand of   is not quasiconvex in general, therefore the result is not appli-
cable. 

 

Theorem 2 (Z. Naniewicz 2001) 
Suppose that functions  and  are quasiconvex and satisfy . 

Then there exist: 
(a) sequence ,  weakly in ,  

(b) sequences   

with +  such that  in   

, with   
These sequences have the properties:  

(c)   

(d)  

If  additionally  

(e)  as 

 then  

is a solution of the primal problem , i.e.  and, 

moreover,  
 

The above theorem enables us to introduce term , called the relaxation term. 
Namely, we have  

 

and if  
In many practical cases it is possible to find the explicit formula for 

 This is the subject of the next section. 

2. One-dimensional nonconvex Neumann problem 

Let  and define for , the functional 
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Where  are real constants, . We consider the following minimization 
problem: 

 

We proceed analogously as in [2]. According to Theorem 2 there  sequences , 

 such that  there holds an inequality: 

 

 

This means that  is the critical point of the functional  

 

 

Therefore  we have 

 

By the du Bois-Raymond lemma, constant  exists such that  

 

For  denote  Equation (4) has now the form  

 

Multyplying (6) by  and doing some algebraic manipulations we get 
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Observe that the left hand side of (7) is exactly the integrand of  given by (4). 

Now, multiplying (5) by  and using the fact that  we get 

 

which inserted into (7) leads to 

 

 

Sequence  as bounded in  has a subsequence convergent to some  

By the Sobolev imbedding theorem, sequence  is convergent to some  in 
This means that we can pass to the limit as  in (8) and get  

 

Again from (6) we get 

 

and 

. 

Adding the above inequalities yields 

 

As each term in this equality is weakly convergent in , we can pass to   
with : 

 

With the help of (10) we can then write 
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and 

 

 

and further 

 

 

Observe that the right hand side of the above equation is in fact the integrand in (9) 
plus    and   . 

We can now write the expression for the infimum of : 

 

 

where 

 

is the relaxation term. Of course  takes its maximum value  if . If 
, then the relaxation term vanishes and we have the solution of 

the classical one-dimensional Neumann problem. In paticular, this is the case if 

sequence  converges strongly to  (or ) i.e. if it is constant for all  larger 
than some .  
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