
Scientific Research of the Institute of Mathematics and Computer Science, 2(10) 2011, 87-98

REVIEW OF GENERAL EXPONENTIATION ALGORITHMS

Artur Jakubski, Robert Perliński

Institute of Computer and Information Sciences
Czestochowa University of Technology, Poland

artur.jakubski@icis.pcz.pl, robert.perlinski@icis.pcz.pl

Abstract. Arithmetic on large integers is often necessary in cryptography. Many cryptosys-

tems depend on the possibility of computing powers eg (exponentiation). In this paper we

describe well-known exponentiation algorithms with their complexity analysis. Our algo-
rithm introduces a new idea of solving the exponentiation problem. We show cases in
which the complexity of our algorithm is better than the complexity of any other algo-
rithms.

Introduction

The problem of efficient exponentiation is extremely important for the devel-
opment of modern cryptography. Many cryptographic systems use this operation in
the information encryption process (eg. RSA or ElGamal).

This work concerns the problem of effectively calculating eg , where g is an
element of group G, and e is a positive integer number [1+2]. Generally, this prob-
lem is considered when g is a real number. In this paper we analyse general expo-
nentiation algorithms and compare their effectiveness. As the criterion of the effec-
tiveness of the algorithm we adopted the number of group operations which the
algorithm performs. When this number is smaller for a set of values adopted by e,
such an algorithm is considered to be more efficient. We are aware of the fact that
analysis of the number of algorithm bit operations would be more conclusive.
Aware of this fact, we abandoned it to simplify the analysis and thus to make the
paper clearer.

In this paper we present our own contribution, a new general exponentiation al-
gorithm. We called it the algorithm of zero-one sequences and it is contained in
Section 2 of this work. We compare its effectiveness to other algorithms presented
in the work.

1. Review of general exponentiation algorithms

The problem of exponentiation can be considered due to the changing values of
g or e. We can consider the problem for fixed base g and changing exponent e or

Please cite this article as:
Artur Jakubski, Robert Perliński, Review of general exponentiation algorithms, Scientific Research of the Institute of
Mathematics and Computer Science, 2011, Volume 10, Issue 2, pages 87-98.
The website: http://www.amcm.pcz.pl/

A. Jakubski, R. Perliński 88

inversely, for fixed e and arbitrarily chosen g. The third option is when both the
values are subject to change.

There are therefore three types of exponentiation algorithms:
• general exponentiation algorithms,
 exponentiation for arbitrarily chosen g and arbitrarily chosen e, so-called

general purpose exponentiation algorithms:
– simple binary and k-ary exponentiation
– sliding-window exponentiation

• fixed-exponent exponentiation
• fixed-base exponentiation.
In this paper we consider the general exponentiation problem, where neither g nor e
are predetermined. In our study, we will analyse the values of e in a certain range
in order to compare the effectiveness of the algorithms.

1.1. Exponentiation - naive method

It seems that the easiest way to calculate eg is to perform 1e − operations in
group G. Below is an example of an algorithm pseudocode called the naive
method.

Algorithm - naïve method
Input: g G∈ , e N+∈

Output: eg

1. A g←

2. For i from 1 to 1e − do the following:
2.1. A A g← ⋅

3. Return A

This simple method of calculating power is often ineffective, especially when e
is of a high value. Moreover the complexity of this algorithm requires calculating
O(e) multiplications. For practical applications, where e is of several hundred,
a thousand, or more bits, the application of this method is impractical.

1.2. Left-to-right algorithm

The number of operations in the algorithm of the previous section can be signif-
icantly reduced. In this and the next section we will present the algorithms de-
scribed in literature as the binary exponentiation algorithm, iterated algorithm for
raising to the square or the algorithm of fast exponentiation [1+3].
In this algorithm, the value of A (partial results of exponentiation) is raised to the
square in each course of loop 2, ie. t + 1 times. In each execution of loop 2 the
algorithm checks the next bit value, if this value is equal to 1, we assign
multiplying A and g to result A.

Review of general exponentiation algorithms 89

Algorithm of left-to-right binary exponentiation

Input: g G∈ , a positive integer 1 1 0 2()t te e e e e−= ⋯

Output: eg

1. 1A ←
2. For i from t down to 0 do the following:

2.1. A A A← ⋅

2.2. If 1ie = than A A g← ⋅

3. Return A

Due to the fact that the most significant bit of exponent e is equal to one, we can
omit the first execution of loop 2 and thus assign g to variable A. We take into ac-
count this fact when analysing the complexity of this algorithm. In more detailed
analysis, the number of multiplications (operations in the group), of this algorithm

is log () 1e v e+ −   , where ()v e is the number of ones in the binary representation

of e [4]. For e = 15, this method requires six multiplications, while 15g can be de-
termined using only five multiplications. The algorithm does not work optimally,
particularly for binary exponents that contain long sequences of ones. In conclu-
sion, the asymptotic complexity of the left-to-right algorithm is O(log e).

1.2.1. Example

Below we present the left-to-right algorithm. Table 1 describes the obtained
values, taken by A in succeeding loop 2 courses, for exponent e = 283.

Table 1

Operating of left-to-right algorithm for e = 283

i ie (2)e A

8 1 1 g

7 0 10 2g

6 0 100 4g

5 0 1000 8g

4 1 10001 17g

3 1 100011 35g

2 0 1000110 70g

1 1 10001101 141g

0 1 100011011 283g

A. Jakubski, R. Perliński 90

1.3. Right-to-left algorithm

This algorithm, though it differs from the previous one, works very similarly [1,
3]. The main difference lies in the use of binary exponent e. The exponent bits
equal to 1 in this case are checked (in step 2.1 of the algorithm) from the least sig-
nificant bit to the most significant one, so, from right to left. Loop 2 executes as
long as 0e ≠ , that is, de facto, as long as we have bits of the exponent. In each
execution of loop 2, S is raised to the square. Thus, the set of values adopted by S is

{ 1g , 2g , 4g ,… ,
log2 e

g
  

}. Result A is obtained by multiplying these powers g
which correspond to value 1 in the binary form of exponent e (from the least signi-
ficant bit). Just as in the left-to-right algorithm, the asymptotic complexity of this
algorithm is O(log e).

Algorithm of right-to-left binary exponentiation

Input: g G∈ , a integer e N+∈

Output: eg

1. 1A ← , S g←

2. While 0e ≠ do the following:
2.1. If e is odd then A A S← ⋅

2.2. / 2e e←   

2.3. If 0e ≠ then S S S← ⋅
3. Return A

1.3.1. Example

The example of the right-to-left algorithm is shown in Table 2. Variable A stores
the partial results of the powers computed in succeeding courses of loop 2. Column
3 shows the binary exponent fixed at a given stage of the algorithm.

Table 2
The right-to-left algorithm for e = 283

(10)e (2)e computed exponent A S

283 100011011 1 g

141 10001101 1 g 2g

70 1000110 11 3g 4g

35 100011 011 3g 8g

17 10001 1011 11g 16g

8 1000 11011 27g 32g

4 100 011011 27g 64g

2 10 0011011 27g 128g

1 1 00011011 27g 256g

0 100011011 283g -

Review of general exponentiation algorithms 91

1.4. Montgomery Ladder

The Montgomery Ladder [5] is an interesting modification of the left-to-right
algorithm. Just as in that algorithm, the Montgomery Ladder uses the binary repre-
sentation of exponent e as well. The working of the Montgomery Ladder and the
left-to-right algorithm, is related to reading the subsequent bits of the exponent,
from the most to the least significant bit. The difference in the Montgomery Ladder
is that it begins reading from the second bit. In the Montgomery Ladder, we calcu-
late two possible partial results in one step, which are: raising to the square and
raising to the square with multiplying by g. Depending on the value of the next
exponent bit, we choose the proper partial result.

In this algorithm, there are two auxiliary variables - 1x and 2x . The first one
takes successively (during the execution of the loop 2) the value of 2()teg , 1 2()t te eg − ,
etc., and finally reaches the desired value of 1 1 0 2()t te e e eg − ⋯ . The value of 2x in sub-
sequent loop 2 executions has a value of 1g x⋅ . Variables 1x and 2x are something
like the complementary rungs of a ladder. When 1x is of value 1 2()t t me e eg − ⋯ and the
next bit of the exponent (the next after m) is 1, then 1x takes the value of 1 2x x⋅ , so,

1 1x g x⋅ ⋅ . This means that in this case, the value of 1x is 1 2(1)t t me e eg − ⋯ . When 1x is
of value 1 2()t t me e eg − ⋯ and the next bit of the exponent is 0, then we assign 1 1x x⋅ to

1x , thus, we have computed 1 2(0)t t me e eg −⋯ .
There are two multiplications performed in each execution of loop 2, and the

loop runs 2log e   times. Although the Montgomery Ladder requires a greater

number of operations than the left-to-right algorithm, it has an interesting property.
The calculation of 1x and 2x in step 2.1 can be performed in parallel. Considering
the asymptotic complexity of this algorithm, there are O(log e) multiplications to
perform, the same as for the two previous algorithms.

Montgomery Ladder

Input: an element g G∈ and a positive integer 1 1 0 2()t te e e e e−= ⋯

Output: eg

1. 1x g← , 2
2x g←

2. For i from 1t − down to 0 do the following:

2.1. If 0ie = then: 2 1 2x x x← ⋅ and 2
1 1x x←

Otherwise: 1 1 2x x x← ⋅ and 2
2 2x x←

3. Return 1x

1.5. Sliding-window algorithm

The idea of the sliding-window [3] algorithm is based on using the fact that
certain parts of the binary form of the exponent are often repeated. Having
determined the value of a certain partial power, we can use it repeatedly to

A. Jakubski, R. Perliński 92

calculate the correct power. For this reason, we distinguish the precomputation
stage in the sliding-window algorithm. The precomputation is to determine all odd
powers of g from 1 to 12 1k− − inclusive, where k is the size of the window.

The greater window size (the larger k), the more the operations necessary for
calculating the precomputation, which should result in a fewer number of
operations in the relevant part of the algorithm. However, if the window size is too
large, the cost of the precomputation will not be compensated by a smaller number
of multiplications in the relevant part of the algorithm.

The sliding-window algorithm

Input: g , 1 1 0 2()t te e e e e−= ⋯ where 1te = , integer 1k ≥

Output: eg

1. Precomputation:

1.1. 1g g← , 2
2g g←

1.2. For i from 1 to 12 1k− − do the following: 2 1 2 1 2i ig g g+ −← ⋅

2. 1A ← , i t←
3. While 0i ≥ do the following:

3.1. If 0ie = then: 2A A← and 2
1 1x x←

Otherwise:
Find the longest bitstring 1i i le e e−⋯ such that

1i l k− + ≤ and 1le = , do the following:
1

1 2
2 ()i l

i i lA A g e e e−
− +← ⋅ ⋯ , 1i l← −

4. Return A

The algorithm works similarly to the left-to-right algorithm. The difference is that
it moves due to the window size k, instead of moving bit by bit. Thus, we can save
to 1k − multiplications operations for all k-bits of the exponent.

1.5.1. Example

We want to count the number of 11749g . In this case, the binary form of expo-

nent (10) (2)11749 10110111100101e = = . As its length is 14, value 13t = . The size

of the window we set k = 3. The value of variable subscript g corresponds to the
value of its power. In precomputation we determine:
– In step 1.1:

1g g← , 2g g g← ⋅
– In step 1.2:

3 1 2g gg← ⋅ , 25 3g gg← ⋅ , 27 5g gg← ⋅ .
The example of the algorithm for 11749e = is shown in Table 3. i runs for 14

values which corresponds to the length of the binary exponent (from 0 to 13).

Review of general exponentiation algorithms 93

In the case of the use of a window, we reduce value i of the window size. We raise
partial result A to the square as many as is the window size and multiply by the
value of the used pattern. If the window is not matched, variable i is decremented
(partial result A is raised to the square).

Table 3

Working of sliding-window algorithm, for e = 11749

i computed exponent A window
13 1 101

10 101 5g 101

7 101101 455 8 5()g g g= 111

4 101101111 845 3677()g g g= -

3 1011011110 2 7367 34()g g= -

2 10110111100 734 2 1468()g g= 101

0 10110111100101 81468 5 11749()g g g= -

1.6. “Power tree”

The analysis of algorithms for exponentiation can be performed based on the
power tree [4]. The nodes of this tree are values, which exponent e can adopt. The
following levels of the tree are obtained as a result of the multiplication of nodes at
the levels above the level analyzed. The root of the tree represents the the value
of 1. The path in the tree is the algorithm course for a fixed value of e. The path is
thus a sequence of additives, for a fixed exponent e [4]. The path length (number
of path branches) expresses the number of multiplications which the algorithm
performs.

Fig. 1. Left-to-right algorithm - power tree

A. Jakubski, R. Perliński 94

Analysing the course of the left-to-right algorithm for exponent e = 15 (Fig. 1,
dashed line) in the power tree, we can see that the value of 15 occurs at the seventh
level. Therefore, six branches connect this level with the tree root. This means that
the algorithm requires in this case six multiplications. The value of 15 is for the
first time at the sixth level, this means that the optimum number of multiplications

necessary to calculate 15g is 5. The algorithm from left to right is not optimal.

Fig. 2. Right-to-left algorithm - power tree

The dashed line in Figure 2 shows the analysis of the right-to-left algorithm for
exponent e = 15. As in the previous power tree, the value of 15 occurs at the se-
venth level. For this exponent, the algorithm does not perform an optimum number
of multiplications. The right-to-left algorithm is not optimal either.

Fig. 3. Montgomery Ladder - power tree

Review of general exponentiation algorithms 95

Looking at Figure 3, we can see that using the Montgomery Ladder for expo-
nent e = 15, the algorithm in the power tree passes through the same nodes as the
right-to-left algorithm. We conclude that for the same reasons as the above given
algorithms, this algorithm is not optimal either.

2. The algorithm of zero-one sequences

The idea of this method comes from the fact that it is best to reproduce the bina-
ry pattern consisting of bits of value 1. Such a pattern (we call it the pattern of
ones) can be obtained by multiplying two consecutive patterns (whose length dif-
fers by one), consisting of bits 1 and 0 alternately (we call them zero-one sequen-
ces). In this algorithm, we move through the bits of exponent e to find the length of
the longest sequence of bits of value 1 (marked by d).

Algorithm of zero-one sequences

Input: g , 1 1 0 2()t te e e e e−= ⋯ where 1te =

Output: eg

1. Precomputation:
1.1. Find the longest string of ones and assign its length to variable d
1.2. 1g g← , 0 0n ←

1.3. For i from 1 to (1) / 2d − do the following:

1.3.1. 14 1i in n −← +

1.3.2. 2
2 i in ng g← , 2

4 2i in ng g← , 4 1 4i inng g g+ ← ⋅

1.3.3. If d even then: /2 /2 14 1d dn d −← + ,
/2 /2

2
2 d dn ng g←

2. 1A ← , i t←
3. While 0i ≥ do the following:

3.1. If 0ie = then: 2A A← and 1i i← −

Otherwise:
Find the longest bitstring 1i i le e e−⋯ that matches the bit pattern,

such that 1i l d− + ≤ and do the following:

1 2(
1

)
2

i i l

i l
e eeA A g

−
− +← ⋅

⋯
, 1i l← −

4. Return A

In the precomputation, we construct a base consisting of all the zero-one pat-
terns and patterns of ones of a length less than or equal to value d. Table 4 shows
the calculation of successive zero-one elements for a length not exceeding 9. The
patterns of ones are always obtained by multiplying two successive patterns of
different lengths. The pattern of ones of length 4 will be obtained by multiplying
the patterns of No. 4 and No. 5 in Table 4.

A. Jakubski, R. Perliński 96

Just as in the left-to-right algorithm, we move here through the bits of exponent
e, from the most significant to the least significant. When the pattern occurs in
exponent e, we reproduce it (multiply by the base element). When we have
a sequence composed of bits with value 0, then we raise the value of our temporary
result to the square.

Table 4
Zero-one sequences, precomputation

No. (2)e (10)e cost

1 1 1 0

2 10 2 1

3 100 4 2

4 101 5 3

5 1010 10 4

6 10100 20 5

7 10101 21 6

8 101010 42 7

9 1010100 84 8

10 1010101 85 9

11 10101010 170 10

12 101010100 340 11

13 101010101 341 12

2.1. Example

Suppose we want to count 2805g . In this case, the binary form of exponent

(2)101011110101e = . Because its length is 12, value t = 11. The longest string of
ones of the exponent has a length of 4. Table 5 presents all the elements of precom-
putation.

Table 5

Precomputation for exponent e = 2805

(2)e (10)e

1 1

10 2

100 4

101 5

1010 10

1111 15

The example of the algorithm for e = 2805 is shown in Table 6. The first column

shows the values successively adopted by variable i. The value is reduced by the

Review of general exponentiation algorithms 97

length of the matched pattern that we have in column 4. Variable A holds the
successively determined powers.

Table 6

Algorithm of zero-one sequences for exponent e = 2805

i computed exponent A window

11 1 1010

7 1010 10g 1111

3 10101111 10 16 15 175()g g g= -

2 101011110 175 2 350()g g= 101

0 101011110101 8 28 53 0 05 5()g g g= -

Below we present the comparison of the zero-one sequences algorithm, sliding-
window algorithm and left-to-right algorithm, for exponent e = 2805:
– 15 multiplications for algorithm of zero-one sequences
– 16 multiplications for sliding-window algorithm
– 18 multiplications for left-to-right algorithm and for right-to-left algorithm.

3. Comparison of presented algorithms effectiveness

The comparison of different exponentiation algorithms has been based on the
average number of operations (multiplications), for 1000 randomly selected 128-bit
exponents. The results are presented in Table 7. The results of the two best algo-
rithms are shown in bold.

Table 7

Average number of multiplications performed for 128-bit exponents

Algorithm
Average number of opera-

tions for 1000 tests

left-to-right, binary 188.939

left-to-right, k-ary, k = 3 189.995

left-to-right, k-ary, k = 4 172.852

left-to-right, k-ary, k = 5 168.675

sliding window, k = 3 172.277

sliding window, k = 4 164.451

sliding window, k = 5 166.836

zero-one sequences 164.396

As can be seen, the best results were achieved by the sliding-window algorithm

and, by the paper authors' algorithm - the zero-one sequences algorithm. The best

A. Jakubski, R. Perliński 98

position of the zero-one sequences algorithm results from a good selection of pre-
computation - the number of pre-designated powers and their relationships.

Conclusion

In practice, the algorithm of zero-one sequences for large exponents is less ef-
fective than the sliding-window algorithm for a properly selected value of k. This is
because the number of matching and reproduced patterns for the sliding-window
algorithm is greater than for the zero-one sequences algorithm. This is due to
a smaller number of elements generated in the the precomputation of this algo-
rithm.

In future, we intend to improve the algorithm of zero-one sequences in such
a way that it could use a larger number of rapidly generating patterns.

References

[1] Cohen H., A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin 1993.
[2] Bach E., Shallit J.O., Algorithmic Number Theory, volume I: Efficient Algorithms, The MIT

Press, Cambridge 1996.
[3] Menezes A., van Oorschot P., Vanstone S.A., Handbook of Applied Cryptography, CRC Press,

Boca Raton 1999.
[4] Knuth D., The Art of Computer Programming, volume 2. Seminumerical Algorithms, Addison

Wesley Longman, 1998
[5] Joye M., Yen S.M., The Montgomery powering ladder, Cryptographic Hardware and Embedded

Systems-CHES 2002, s. 1-11

