Please cite this article as:

Artur Jakubski, Robert Perlinski, Review of general exponentiation algorithms, Scientific Research of the Institute of
Mathematics and Computer Science, 2011, Volume 10, Issue 2, pages 87-98.

The website: http://www.amcm.pcz.pl/

Scientific Researcbf the Instituteof Mathematicand Computer Science, 2(10) 2011, 87-98

REVIEW OF GENERAL EXPONENTIATION ALGORITHMS

Artur Jakubski, Robert Perlinski

Institute of Computer and Information Sciences
Czestochowa University of Technology, Poland
artur.jakubski @icis.pcz.pl, robert.perlinski @icis.pcz.pl

Abstract. Arithmetic on large integers is often necessargryptography. Many cryptosys-
tems depend on the possibility of computing powgfsexponentiation). In this paper we

describe well-known exponentiation algorithms wiieir complexity analysis. Our algo-
rithm introduces a new idea of solving the expdiagion problem. We show cases in
which the complexity of our algorithm is better ththe complexity of any other algo-
rithms.

Introduction

The problem of efficient exponentiation is extreynghportant for the devel-
opment of modern cryptography. Many cryptograplstems use this operation in
the information encryption process (eg. RSA or BE@h.

This work concerns the problem of effectively cédting g°, whereg is an

element of grou@s, ande is a positive integer number [1+2]. Generallysthpiob-
lem is considered whepis a real number. In this paper we analyse gemaab-
nentiation algorithms and compare their effectigsnés the criterion of the effec-
tiveness of the algorithm we adopted the numbegrofip operations which the
algorithm performs. When this number is smallerdaet of values adopted by
such an algorithm is considered to be more efficidfe are aware of the fact that
analysis of the number of algorithm bit operatiamsuld be more conclusive.
Aware of this fact, we abandoned it to simplify #uealysis and thus to make the
paper clearer.

In this paper we present our own contribution, & general exponentiation al-
gorithm. We called it the algorithm of zero-one seaces and it is contained in
Section 2 of this work. We compare its effectivensother algorithms presented
in the work.

1. Review of general exponentiation algorithms

The problem of exponentiation can be consideredtaltlee changing values of
g or e. We can consider the problem for fixed bgsend changing exponeator

88 A. Jakubski, R. Periski

inversely, for fixede and arbitrarily choseg. The third option is when both the
values are subject to change.
There are therefore three types of exponentialgorishms:
« general exponentiation algorithms,
exponentiation for arbitrarily choseg and arbitrarily chosere, so-called
general purpose exponentiation algorithms:
— simple binary an#t-ary exponentiation
— sliding-window exponentiation
» fixed-exponent exponentiation
» fixed-base exponentiation.
In this paper we consider the general exponentigititoblem, where neithgrnore
are predetermined. In our study, we will analysethlues ok in a certain range
in order to compare the effectiveness of the aligors.

1.1. Exponentiation - naive method

It seems that the easiest way to calculgfeis to performe—1 operations in

group G. Below is an example of an algorithm pseudocodéedahe naive
method.

Algorithm - naive method
Input: gUOG, elJN,

Output: ¢°

1. A-g

2. Forifrom 1to e—1 do the following:
2.1. A< Aly

3. Return A

This simple method of calculating power is ofteaffactive, especially whea
is of a high value. Moreover the complexity of taigorithm requires calculating
O(e) multiplications. For practical applicationsheve e is of several hundred,
a thousand, or more bits, the application of théthad is impractical.

1.2. Left-to-right algorithm

The number of operations in the algorithm of thevmus section can be signif-
icantly reduced. In this and the next section wé priesent the algorithms de-
scribed in literature as the binary exponentia@dgorithm, iterated algorithm for
raising to the square or the algorithm of fast exgudiation [1+3].

In this algorithm, the value @& (partial results of exponentiation) is raisedhe t
square in each course of loop 2,tie: 1 times. In each execution of loop 2 the
algorithm checks the next bit value, if this valie equal to 1, we assign
multiplying A andg to resultA.

Review of general exponentiation algorithms 89

Algorithm of left-to-right binary exponentiation

Input: gJG, a positive integer e=(€€_,---€€) ,

Output; g°

1. A~1

2. Forifrom t down to 0 do the following:
21. A~ ATA
2.2. If g =1 than A - ALY

3. Return A

Due to the fact that the most significant bit operente is equal to one, we can
omit the first execution of loop 2 and thus asgigto variableA. We take into ac-
count this fact when analysing the complexity a talgorithm. In more detailed
analysis, the number of multiplications (operationshe group), of this algorithm

is LlogeJ+v(e)—1, wherev(e) is the number of ones in the binary representation

of e [4]. Fore = 15, this method requires six multiplications,ilehg™ can be de-

termined using only five multiplications. The algbm does not work optimally,
particularly for binary exponents that contain losgguences of ones. In conclu-
sion, the asymptotic complexity of the left-to-rigiigorithm is O(log e).

1.2.1. Example
Below we present the left-to-right algorithm. Taldledescribes the obtained
values, taken by in succeeding loop 2 courses, for exporeent283.
Table 1
Operating of left-to-right algorithm for e =283

&2

1
10

A
9
gz

100 gt

1000 g®

10001 gt’

100011 g

1000110 g’

10001101 gt

100011011 | 28

O Rr N W M OO N ®
P P O P P O O O R o

90 A. Jakubski, R. Periski

1.3. Right-to-left algorithm

This algorithm, though it differs from the previooise, works very similarly [1,
3]. The main difference lies in the use of binagp@ente. The exponent bits
equal to 1 in this case are checked (in step 2theoflgorithm) from the least sig-
nificant bit to the most significant one, so, fraight to left. Loop 2 executes as
long ase#0, that is, de facto, as long as we have bits ofetkgonent. In each

execution of loop 2Sis raised to the square. Thus, the set of valdeptad bySis
{gl,gz,g“,...,gZUOgeJ }. Result A is obtained by multiplying these powegs

which correspond to value 1 in the binary form xp@nente (from the least signi-
ficant bit). Just as in the left-to-right algorithime asymptotic complexity of this
algorithm is O(log e).

Algorithm of right-to-left binary exponentiation

Input: gG, ainteger elIN,

Output: ¢°

1. A<1,S<g

2. While e#0 do the following:
2.1. Ifeis odd then A - ALS

22. e—|el2]

2.3. If e20 then S «~ S[H
3. Return A
1.3.1. Example

The example of the right-to-left algorithm is shoimriTable 2. Variablé\ stores
the partial results of the powers computed in sedicgy courses of loop 2. Column
3 shows the binary exponent fixed at a given stdgee algorithm.

Table 2
The right-to-left algorithm for e = 283
€10) €2) computed exponent A S
283 | 100011011 1 g
141 | 10001101 1| ¢ 9°
70 | 1000110 11| ¢ g*
35 | 100011 011 ¢® g8
17 | 10001 1011 gt | g'®
8 | 1000 11011 g% | ¢
4 | 100 011011 g%’ | ¢*
2 |10 0011011 ¢*" | ¢'*®
1 |1 00011011 g%’ | ¢?%¢
0 100011011f ¢283 -

Review of general exponentiation algorithms 91

1.4. Montgomery Ladder

The Montgomery Ladder [5] is an interesting modifion of the left-to-right
algorithm. Just as in that algorithm, the Montgoyrieadder uses the binary repre-
sentation of exponerd as well. The working of the Montgomery Ladder dhe
left-to-right algorithm, is related to reading thebsequent bits of the exponent,
from the most to the least significant bit. Theeatiénce in the Montgomery Ladder
is that it begins reading from the second bit.niea Montgomery Ladder, we calcu-
late two possible partial results in one step, Whace: raising to the square and
raising to the square with multiplying iy Depending on the value of the next
exponent bit, we choose the proper partial result.

In this algorithm, there are two auxiliary variablex, and X,. The first one

takes successively (during the execution of the Bjothe value ofg®2 | g@d-2,
etc., and finally reaches the desired valugBf=+"**2 The value ofx, in sub-
sequent loop 2 executions has a valug bk, . Variablesx and X, are something
like the complementary rungs of a ladder. Wheris of value g2 and the
next bit of the exponent (the next aftaxis 1, thenx, takes the value ok [X,, so,
x [§ X . This means that in this case, the valuexofs g‘@%t %2 when x, is
of value g‘@@1 "2 and the next bit of the exponent is 0, then wégass, (X, to
%, thus, we have computegf®®-+ 92

There are two multiplications performed in eachcexien of loop 2, and the

loop runs LlogzeJ times. Although the Montgomery Ladder requiresreaatgr

number of operations than the left-to-right aldumt it has an interesting property.
The calculation ofx, and X, in step 2.1 can be performed in parallel. Congider

the asymptotic complexity of this algorithm, thene O(loge) multiplications to
perform, the same as for the two previous algorsthm

Montgomery Ladder
Input: an element g 0G and a positive integer €=(€6_,---€€) ,
Output: ¢°
L %@ %<0
2. Forifrom t—1 down to 0 do the following:

2.1.1f g =0 then: X, — % X, and X « X

Otherwise: X « % [X, and X, « X

3. Return X

1.5. Sliding-window algorithm

The idea of the sliding-window [3] algorithm is ledson using the fact that
certain parts of the binary form of the exponer¢ aften repeated. Having
determined the value of a certain partial power, sag@ use it repeatedly to

92 A. Jakubski, R. Periski

calculate the correct power. For this reason, vatirgjuish the precomputation
stage in the sliding-window algorithm. The precotagion is to determine all odd

powers ofg from 1 to 2 -1 inclusive, wher is the size of the window.

The greater window size (the larddr the more the operations necessary for
calculating the precomputation, which should resunlta fewer number of
operations in the relevant part of the algorithrowdver, if the window size is too
large, the cost of the precomputation will not benpensated by a smaller number
of multiplications in the relevant part of the aigiom.

The sliding-window algorithm
Input: g, e=(gg_,---€€,), where g =1, integer k=1
Output: ¢°
1. Precomputation:
11. g g, 0, « ¢°
1.2. Forifrom 1to 2" -1 do the following: Osis1 < U510,
2. Acli<t
3. While i 20 do the following:
3.1. Ifg=0then: A A% and X « X
Otherwise:
Find the longest bitstring €6_;---§ such that
i—I+1<k and g =1, do the following:
A AT G(gG+q)s | <171
4. Return A
The algorithm works similarly to the left-to-rightgorithm. The difference is that

it moves due to the window sikeinstead of moving bit by bit. Thus, we can save
to k=1 multiplications operations for all k-bits of thepmnent.

1.5.1. Example

We want to count the number of*"*. In this case, the binary form of expo-
nente=11749,, = 101101111001Q]. As its length is 14, value=13. The size

of the window we sek = 3. The value of variable subscriptcorresponds to the
value of its power. In precomputation we determine:
— Instep 1.1:

% -9,09 -9
— Instep 1.2:
O« 910, 95 —« G300,, 97 — 951,

The example of the algorithm far=1174¢ is shown in Table 3. runs for 14
values which corresponds to the length of the Birexponent (from 0 to 13).

Review of general exponentiation algorithms 93

In the case of the use of a window, we reduce viabfghe window size. We raise
partial resultA to the square as many as is the window size artipiguby the
value of the used pattern. If the window is notehat, variable is decremented
(partial resuliA is raised to the square).

Table 3
Working of sliding-window algorithm, for e = 11749

i computed exponent A window
13 1 101
10 | 101 ¢ 101
7 | 101101 (0®)8g5= g% 11
4 | 101101111 (g*5)8g7 = 937 i
3 | 1011011110 (g%7)2 = g™ _

2 | 10110111100 (9734 2= gl468 101
0 | 10110111100101 | (g4688g5=gil74 .

1.6. “Power tree”

The analysis of algorithms for exponentiation canperformed based on the
power tree [4]. The nodes of this tree are valudsch exponene can adopt. The
following levels of the tree are obtained as a ltesfuthe multiplication of nodes at
the levels above the level analyzed. The root eftthe represents the the value
of 1. The path in the tree is the algorithm codwsea fixed value ok. The path is
thus a sequence of additives, for a fixed expoedai. The path length (number
of path branches) expresses the number of mubipdies which the algorithm
performs.

b — — =

\
AN AN N N AN

7867 10 7 8 9 12 7 910 7 10 12 9 10 12 16

15 14 15 15 15

Fig. 1. Left-to-right algorithm - power tree

94 A. Jakubski, R. Periski

Analysing the course of the left-to-right algoritdor exponene = 15 (Fig. 1,
dashed line) in the power tree, we can see thatahe of 15 occurs at the seventh
level. Therefore, six branches connect this levigh the tree root. This means that
the algorithm requires in this case six multiplicas. The value of 15 is for the
first time at the sixth level, this means that dpgimum number of multiplications

necessary to calculag’ is 5. The algorithm from left to right is not aptl.

1
|
|
—~2

/3’;, \
ke \ /\
AN AN AN N N N

5 6 86 7 8 10 7 9 12 6 7 9 10 7 8 10 12 9 10 12 16

r

|

|

8 15 15 15 15
|

|

15
Fig. 2. Right-to-left algorithm - power tree

The dashed line in Figure 2 shows the analysif®fight-to-left algorithm for
exponente = 15. As in the previous power tree, the valud®foccurs at the se-
venth level. For this exponent, the algorithm deesperform an optimum number
of multiplications. The right-to-left algorithm i®t optimal either.

1
|
|
2

:1”’/ \
/\
J//\ AN //\\ //\\ //\\ AN

67 B 10 7 9 12 7 9 10 7 8 9 10 12 16

i

I

I

8 15 15 15 15
I

I

15

Fig. 3. Montgomery Ladder - power tree

Review of general exponentiation algorithms 95

Looking at Figure 3, we can see that using the kfomiery Ladder for expo-
nente = 15, the algorithm in the power tree passes tiitdhe same nodes as the
right-to-left algorithm. We conclude that for thanse reasons as the above given
algorithms, this algorithm is not optimal either.

2. The algorithm of zero-one sequences

The idea of this method comes from the fact that litest to reproduce the bina-
ry pattern consisting of bits of value 1. Such #&gwa (we call it the pattern of
ones) can be obtained by multiplying two conseeupatterns (whose length dif-
fers by one), consisting of bits 1 and O alterryatele call them zero-one sequen-
ces). In this algorithm, we move through the bftexponent to find the length of
the longest sequence of bits of value 1 (marked)by

Algorithm of zero-one sequences
Input: g, e=(gg_,---€€,), where g =1
Output: ¢°

1. Precomputation:
1.1. Find the longest string of ones and assign its length to variable d
12. ¢, -0, n <0
1.3. Forifrom 1to (d —1)/2 do the following:

1.3.1.n «4n+1
1.3.2. 05 < Oa» Gay < O3y » Jansa = Oy [0
1.3.3. If d even then: Ny, « 4dypy+1, Qg < 02,
2. Al it
3. While i 20 do the following:
3.1. Ifg=0then: A A% andi —i-1
Otherwise:
Find the longest bitstring §€_,---§ that matches the bit pattern,
such that i =1 +1<d and do the following:
2i-1+1 : _
A A Dg(%—r'ﬁ)z’ P—1-1
4. Return A

In the precomputation, we construct a base congigif all the zero-one pat-
terns and patterns of ones of a length less thageal to valuel. Table 4 shows
the calculation of successive zero-one elements flength not exceeding 9. The
patterns of ones are always obtained by multiplytwg successive patterns of
different lengths. The pattern of ones of lengtvih be obtained by multiplying
the patterns of No. 4 and No. 5 in Table 4.

96 A. Jakubski, R. Periski

Just as in the left-to-right algorithm, we moveehthrough the bits of exponent
e, from the most significant to the least significaWwhen the pattern occurs in
exponente, we reproduce it (multiply by the base elementhéWv we have

a sequence composed of bits with value O, therage the value of our temporary
result to the square.

Table 4

Zero-one sequences, precomputation
No. €2) €10) | cost

1 1 1 0

2 10 2 1

3 100 4 2

4 101 5 3

5 1010 10 4

6 10100 20 5

7 10101 21 6

8 101010 42 7

9 1010100 84 8
10 1010101 85 9
11 10101010 17(10
12 101010100 34(11
13 101010101 341 12

2.1. Example

Suppose we want to courg®®*®. In this case, the binary form of exponent
e=1010111101Q},. Because its length is 12, value 11. The longest string of

ones of the exponent has a length of 4. Table &pis all the elements of precom-
putation.

Table 5
Precomputation for exponente = 2805

&2) €10
1 1
10 2
100 4
101 5
1010 10
1111 15

The example of the algorithm fer= 2805 is shown in Table 6. The first column
shows the values successively adopted by varialdlee value is reduced by the

Review of general exponentiation algorithms 97

length of the matched pattern that we have in coldm VariableA holds the
successively determined powers.

Table 6

Algorithm of zero-one sequences for exponemt= 2805

i | computed exponent A window
1 1 1010
7 | 1010 glO 1111
3 | 10101111 (g9)16g15= g 17)

2 | 101011110 (9175) 2_ g 350 101
0 | 101011110101 (9350)895 - g2835 .

Below we present the comparison of the zero-onaeseags algorithm, sliding-
window algorithm and left-to-right algorithm, forgonente = 2805:
— 15 multiplications for algorithm of zero-one seqoes
— 16 muiltiplications for sliding-window algorithm
18 multiplications for left-to-right algorithm arfdr right-to-left algorithm.

w

. Comparison of presented algorithms effectiveness

The comparison of different exponentiation algerishhas been based on the
average number of operations (multiplications),000 randomly selected 128-bit
exponents. The results are presented in Table &.r@ults of the two best algo-
rithms are shown in bold.

Table 7

Average number of multiplications performed for 128bit exponents

gt | PV e o e

left-to-right, binary 188.939
left-to-right, k-ary,k =3 189.995
left-to-right, k-ary,k = 4 172.852
left-to-right, k-ary,k =5 168.675
sliding window,k = 3 172.277
sliding window,k = 4 164.451
sliding window,k =5 166.836

zero-one sequences 164.396

As can be seen, the best results were achieveaelsliting-window algorithm
and, by the paper authors' algorithm - the zerosmtpiences algorithm. The best

98 A. Jakubski, R. Periski

position of the zero-one sequences algorithm redtdm a good selection of pre-
computation - the number of pre-designated powsdslaeir relationships.

Conclusion

In practice, the algorithm of zero-one sequencedaige exponents is less ef-
fective than the sliding-window algorithm for a pasly selected value & This is
because the number of matching and reproducedrmatter the sliding-window
algorithm is greater than for the zero-one sequeradgorithm. This is due to
a smaller number of elements generated in the theomputation of this algo-
rithm.

In future, we intend to improve the algorithm of@®ne sequences in such
a way that it could use a larger number of rapg#igerating patterns.

References

[1] Cohen H., A Course in Computational Algebraic Numbeedry, Springer-Verlag, Berlin 1993.

[2] Bach E., Shallit J.O., Algorithmic Number Theory,lwme |: Efficient Algorithms, The MIT
Press, Cambridge 1996.

[3] Menezes A., van Oorschot P., Vanstone S.A., HarkllobApplied Cryptography, CRC Press,
Boca Raton 1999.

[4] Knuth D., The Art of Computer Programming, volumeS2zminumerical Algorithms, Addison
Wesley Longman, 1998

[5] Joye M., Yen S.M., The Montgomery powering laddgnyptographic Hardware and Embedded
Systems-CHES 2002, s. 1-11

