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Abstract. The exact solution to a problem of the thermalhduced vibration of

a homogeneous annular plate is presented. Thedewadi plate is subjected to the activity
of a point heat source, which moves with a consséagfular velocity on the plate surface
along a trajectory. The thermal moment is derivedie basis of a temperature field in the
plate. The solution to the vibration problem isabéd by using Green’s function method.

Introduction

The thermally induced vibration of beams and plétes great interest to engi-
neers due to its practical importance in mechanicaémical, aeronautical and
nuclear power industries. Several authors haveestutie problem of the thermally
induced vibration of plates [1-7].

In paper [1], the equation of a thermally excitélration of a circular plate is
derived. The plate forced by a temperature fieldimg harmonically in time was
considered. The heat conduction problem was sdlyadeans of the finite Hankel
transformation and the solution was found in thenfof a series. In paper [2], the
thermally induced vibrations of simply supported atamped circular plates were
studied. In this analysis, it is assumed that is&idution of temperature is linear
through the thickness and along the radius. Toestblis problem, the authors used
an analytical method (the method of separatioraofbles) and a numerical meth-
od (the finite element method). The non-linear oesie of a thermally loaded iso-
tropic plate was investigated by Haider, Arafat asayfeh [3]. The plate was
excited externally by a harmonic force near thenpry resonance. The authors
considered the in-plane thermal load to be axisymmen paper [4], the authors
investigated an inverse thermoelastic problemtimraisotropic circular plate. The
authors determined the temperature distribution #re¥mal deflection on the
curved surface of the plate by employing an integemsform. The results were
obtained in terms of series of Bessel's functidrtse thermally induced vibration
of a circular and annular plate is presented irepffi. The plate was subjected to
a sinusoidally varying heat flux on one surface #redother is thermally insulated.
Applying the theory to circular and annular platibe deflection, the stress distri-
bution and the frequency response of the plate® walculated numerically. In
paper [8], the problem of the thermally inducedrailon of a circular plate was
solved by using Green'’s function method.
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In this paper, an analytical solution to the prablef the thermally induced vi-
bration of an annular plate is presented. The tabkmoment caused by the tem-
perature distribution on the thin annular plateletermined and displacements of
the plate induced by the thermal moment are andlglzeoretically. The solution to
the problem is obtained by using a time-dependeeéss function.

1. Heat conduction problem

An annular isotropic plate of uniform thickndssvith inner radiusa and outer
radiusb (Fig. 1) is considered. This plate is heated lneat source which moves
on the plate surface along a concentric circuklgegtory at radius, with constant
angular velocityew.

heat source

Fig. 1. Schema of annular plate with heat source

The temperature of the plate is governed by thé d@aluction equation which
in cylindrical coordinates is as follows

2T 1 10T
0T +2—+=q(r,p,zt) =—— 1
37 kq( @71) < At (1)

= o* EL ia—z T(r,¢,zt) - temperature of the plate at point
ar? rar r2ag* T

(r,¢,2) attimet, k - thermal conductivityx - thermal diffusivity andq r(¢ z t, )

represents the heat generation term. The heat gj@reterm is assumed in the

form:

where: O

o(r.9,2t)=05( —1,)o(¢ - ¢t)) Az —h) )
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where @ characterises the stream of the héf),is the Dirac delta functiong(t)
is the function describing the movement of the Iseatce

@t) = wt (3)

An analytical form of the temperature distributionthe considered plate has
been given in paper [9] as a solution of equatim(ith the following initial and
boundary conditions:

T(r,¢.20)=0 4

T =T T ,=T (5)

k2L @.90) = oo =T(r,@h 0] (6)
KL 0,90, ==a[To ~T(r, 0001 @)

where aqy is the heat transfer coefficienily is the known temperature of

the surrounding medium. The temperatureTior O is expressed as (derivation is
presented in paper [9])

T(, qo,zt)-“iii Rulolnl)p vw p ) @)

m:1n 1 k=1 Qn mk
where

F\)nk(r) :Ym(ymka)‘Jm(ymkr)_‘Jm(ymka)Ym(ymkr)
W, (2)=B,cosB,z+ 1, sinB,z, N=12,...

Vi are the roots of the equation

‘Jm(ymka)Ym(ymkb)_‘Jm(ymkb)Ym(ymka):0 (9)
andg, are the roots of the equation
24, B, cosp,h— (B2 - 1,2 )sin,h=0 (10)
1

Ao (. @) = — [ S COSM(¢ ~w't) —mw sirm(¢ ~wt)

Fookc + (11)
~ (i COSTY — M simp ) € m”kt]
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whered ., = K(,an + yﬁ]k)

2
Q. =2(6: +u§)(1+—§i:h‘;:2 sin’ ﬁth 12
AN N CY/N e CYP B < N YA VAN CYVA) (13)

#:;]k = _a_22 (Ynf—l(aymk ) + Ynf (aymk )) + b_22 (Ynf—l(bymk ) + Ynf (bymk ))

LY VA VNN YA Y700 EET X AN (70 YA 7

mk

2

#r?k = _a_22 (‘]ri—l(aynk) + ‘Jr%(aymk ))+ % (Jri—l(bymk)"' Jri(bymk ))

+ 1 (a‘]m—l(aymk )‘]m(aymk)_ b ‘]m—l(bymk)‘Jm(bymk))

mk
ot =57 ot (o Flasese, ootz Fle 82 o)

where Gg"'

q

n( J @@+t ap
by...- P B b

) is a G-Meijer function [10].

2. Problem of thermally induced vibration of annula plate

The thermally induced vibration of the considerddte is governed by the
biharmonic differential equation [8]

2
DOw y‘;t‘;"— —0 M, (14)

whereD is the flexural stiffnesg; is the mass per unit area of the platé,,t) is
the displacement of the middle surface of the pdatpoint (,®) at timet, andM+
denotes the thermal moment. The thermal momentaapes a result of a tempera-
ture field in the plate and it is defined as [8]

M, =1"—E 2T (r.¢,2.)dz (15)
%

O =y >
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The presented study deals with an annular platke sihply supported edges,
which means that the following boundary conditians satisfied

w=0, _D{aw l/[16W 1aw

ar? ror r?og¢f

Moreover, the zero initial conditions are assumed

J:I 0 onr=aandr=b (16)

w=2Y_0 fort=0 17)
ot

Substituting (8) for equation (15), we obtain thermal moment in the form:

o 0 0o

Mr @) = 0TS S

m=0 n=1 k=1 n/Ymnk

Rk (VikTo) Rk (Vi) (M) B mnk( )

(18)
where

o - (i) (82 + 8 Jsin b - 28,14
n
Zﬁﬁﬂo
The solution to problem (14), (16), (17) in an gtiahl form is obtained by

using the properties of Green’s function, which isolution of differential equation
[11]

DD4G + U gztG J(I’ ~ ,0)5(%_1//)5(1: - T) (19)

and satisfies the zero initial and homogeneous deynconditions analogous to
conditions (16), (17). The solution to vibrationoplem (14), (16), (17) can be
expressed as

tb2mr

w(r,@t)=]] | O*M1 (0.0, 7)G(r.@.t; o0, 7)dy dpdr (20)
000

3. Green'’s function

The GF for the considered vibration problem maywsiten in the form of
a series

G(r. @)= 3 gnlr.t)cosmlp-y) (21)

m=-—oco
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Substituting series (18) for equation (16) and gisie expansion [8]

1 (=)
dp-y)=-— Ycosmlp-y) (22)
”m:—oo
the differential equation for the functiorgﬁn(r,t) is obtained
2 22 2 _ -
0 10 M), 4Gy _Olr-p)lt-1) 23)
ar? rar r? D at? 25D 1
Next, using (18) in boundary and initial conditiqd8), (14), we have
9%g 10g, m® )|
a,t) =0, D4y ——"-—-0, =0 24
In(at) er V(rar rzg__ (24)
d%g 19g, m?
b,t)=0, Mty ——M——- =0 25
gm( ) |:ar2 (r ar r2 gm ) ( )
r=
gnlr 0)=0, ZIml = (26)
ot |,

The solution to initial-boundary problem (23)-(2&)n be presented in the form:

Gn(11)= X Q1)) (27)
where Qn, (r) are the eigenfunctions of the following boundgargblem:
[:r +%%—T—2}2an(r)—a:tnomn(r)= 0 (28)
Que(@) =0, aa? +v[% S —T—menj: o
Qun(H) =0, aa? +v[%a§:“” —T—menJ: = (30)

The general solution of differential equation (28 be written in the form:

an(r) = Cl‘]m(/]mnr)-l- C2Ym(/]mnr)+ C3I m(/‘mnr)-l- C4Km(/]mnr)

(31)
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where J,,,, Y,, are the Bessel functions of order and | ,,, K,,, are the modified

Bessel functions of orden. Substituting function (31) for boundary conditon
(29), (30), we obtain a system of homogeneous emsat

4
> a,C, =0, i=1..,4 (32)
j=1

A= 28 = o 30+ A 3.
A32 = (% - /]?nnJYm(/]mna)-l-l_TV/]mn Ym+1(/]mna)
A33 = (% + AﬁwnJ I m(/]mna)_l_TV/]mn I m+l(/]mna)’
A= 2 )+ A o)
o)+ 25 A ).
A42 = (% - /]ﬁwnJYm(/]mnb) + :L_TV/]mn Ym+l(/]mnb)
A= 2 A | )= A )

A, = (% + ,fmj Ko (Anb) + PTVAW Koa(Anb)

where p,, = m(m—])(l— V).

A non-trivial solution of system (32) exists foretie A,,,, which satisfy
equation

detA,| =0 (33)
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This equation can be written in the form:
wlmi(a,b, )Wl (a,b, A) - @l (a,b, A )@l (a,b, A)
+wm(a,b,2) w5 (a,b,4) - w0 (a,b, 1) (2, b, ) (34)
+@lmi(a,b, A)wlM (a,b, 1) - @i (a,b, )¢ (a,b,1) = 0
where:

¥il(a.b,A)=1,(a4)3, (b

(04) = 1,,(02)3,(a1)
(b, 2) =1, (a1)K,(02) =1 (BA)K n(21)
¢li(a,b,2) = 1 (@)Y, (04) =1, (0A)Y,, (1)
wil(a,b,1) = 3, (a1)K,,(04) - 3, (bA)K . (a1)
ZWCH W) ENMEY) A7) ENMGY) ACY)
¢l (b, 2) = K (a2, (04) = K,y (b)Y, ()

The roots of equation (34) are determined numdyicBhe eigenfunctions corre-
sponding to the roots are derived by using thetieolwof system (32) in equation
(31). After transformations, the eigenfunctions bampresented in the form:

1 - 2.0
Qu(1)= {480 A )+ 2l (r0.)|

m

~ @M (@b, A)wi (a,r, 1) - @l (a,b, A) @l (a,r, 1) (35)
~wlmd(a,b,A) M (@b, A)+ Wl (a,r, A) ¢l (@b, 1) = 0

Note that functiondR,,, satisfy the orthogonality condition

b 0 for n'zn
.[rRmn(r)Rmn'(r)dr ={ (36)
0 )(m(/lmn) for n'=n
where
_b% 52 _ v olm
%mrabwmwmemm>x 1)3,(1) -
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Taking into account (23), (24) and using orthogitypadondition (31) in equa-
tions (20) and (22), we obtain the differential @pn

0’ () D Qun(0)
mn /]4 /— - mn —
o o m)= 5 ) (38)
and initial conditions
I,n(0)=0, d/mn =0 (39)
dt |
t=0
The solution to initial problem (33), (34) has foem
_ Qb)) e
I m"(t)_ZHuan)(m(Amn)smgm” (t r)H(t T) (40)

where Q2 =b4l/1rﬁn andH denotes the Heaviside function.

Finally, on the basis of equations (18), (23) Gtedunction for the simply
supported circular plate can be written in thediwihg form

G(I’,qﬂ,t;p,lﬂ,r):m i i an(p)

= nﬂm(QOn(r)stmn(t —1)cosm(g-y)

(41)

Summary

In this paper, the problem of the transverse vibradf an annular plate induced
by a mobile heat source was considered. Formulatighe problem was based on
the differential equations of heat conduction amahdverse vibration of the plate,
which were complemented by suitable initial and rdmary conditions. The tem-
perature distribution and transverse vibrationhaf &annular plate in an analytical
form were obtained by using the properties of Geefemction.
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