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Abstract. In the paper, an unbounded blackjack type optimal stopping problem is consid-
ered. A decision maker (DM) observes sequentially the values of an infinite sequence of 
nonnegative random variables. After each observation, the DM decides whether to stop or 
to continue. If  the DM decides to stop at a given moment, the obtains a payoff dependent 
on the sum of already observed values. The greater the sum, the more the DM gains, unless 
the sum exceeds a given positive number. If so, the decision maker loses all or part of the 
payoff. It turns out that under some elementary assumptions the optimal stopping rule 
(OSR) for such a problem has a very simple, so-called threshold form. However, even in 
very simple cases, the value of the problem has no closed analytical form. Therefore, it is 
very hard  to evaluate the value directly. Thus, in order to find the relationship between the 
problem design parameters  and the value of the problem, is proposed studying the relation 
via Monte Carlo simulations combined with regression analysis The same approach is 
adopted to examine the OSR risk characteristics. 

Introduction 

The “blackjack type problem” (BTP) models a class of optimal stopping deci-
sion tasks in which the decision maker observes sequentially the values of a given, 
maybe infinite, sequence X1, X2, …, XN, ...  of nonnegative random variables. After 
each observation, the decision maker (DM) decides whether to stop or to continue. 
If the DM decides to stop at moment k, he/she obtains a payoff dependent on the 
sum X1+…+Xk. The greater the sum, the more the DM gains, unless the sum  
exceeds a given number T - a limit given in the problem. If so, the DM loses all or 
part of the payoff. Such problems can represent various real world situations, 
which can be observed in engineering, economics, finance or social life, see e.g.  
[1, 2]. To illustrate the class of problems, let us consider a problem of loading 
a device with a limit of load bearing capacity. Many types of machines (trucks, 
cranes etc.) or other engineering structures (such as dams, roofs, bridges, computer 
servers) may be subjected to excessive overloads resulting in possible breakage of 
the mechanism or structure. Assume a DM observes the loading process of such 
a device. During the loading process, the load is increased in random steps, as for 
example during a flood (a dam) or heavy snowfall (a roof). Assume that the limit of 
the load bearing capacity of the device is given. After each observation, the DM  
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decides whether to stop or to continue the process of loading. The DM wants the 
device to bear as much load as possible. However, on the other hand, if the limit of  
the load bearing capacity is crossed, then the gain for the DM is dramatically de-
creased.  

The name of the class of optimal stopping problems is taken from one of the 
most popular casino table card games. Blackjack type games are played on a points 
system that gives numeric values to every card in a single deck of playing cards. 
The cards are given to a player sequentially until he decides to stop. The score is 
the sum of the values in his hand. The player with the highest total score wins as 
long as it does not exceed a given limit. If a player’s cards exceed the limit, then 
the player loses and his/her bet is taken by the dealer.  

Optimal stopping problems form a class of optimization problems with a wide 
range of applications in mathematical statistics, engineering, industry, economics, 
and mathematical finance. The most interesting include e.g. job-search and house-
hunting problems, see e.g. [3-6], engineering and computer systems maintenance 
and/or management [7, 8], the pricing of perpetual American options as well as the 
optimal timing to invest in a project or capitalizing an asset [9-12]. 

In the theory of optimal stopping, see e.g. [3, 4], the solution of any optimal 
stopping problem consists of the optimal stopping rule (OSR) and the value of the 
problem, i.e. the greatest expected payoff possible to achieve. In the case of a finite 
horizon, a solution for BTP satisfying some general assumptions is given in [1]. It 
appears that the OSR  has a relatively simple structure. However, the dependence 
between the expected gain and the design parameters of the problem is rather com-
plex. Even more complex is the relation between these parameters and the value of 
the problem in the case of an infinite horizon. Another important problem is to 
describe the relation between  various risk characteristics of a given OSR and the 
parameters of the stopping problem. There is no analytical expression relating the 
design parameters of the decision problem to the corresponding performance char-
acteristics of the decision rule. Usually in the case when the relationship between 
some dependent and the independent variables is extremely complex or unknown, 
the Monte Carlo simulations approach can be adopted, see e.g. [2, 13-15].  
However, the Monte Carlo methods allow us to solve a specific given problem 
rather than to obtain some general expressions describing the relation in which we 
are interested.  Thus in order to obtain some more general results we propose com-
bining the Monte Carlo method with regression analysis which enables us to esti-
mate and express analytically the relationship which we are going to study with the 
help of computer simulations.    

The paper is organized as follows. In the next section we formally state a gene-
ral BTP and recall some important definitions from the theory of optimal stopping. 
In Subsection 1.3, we define the considered risk characteristics and in Subsection 
1.4, we describe a specific BTP which will be studied in detail. In Subsection 2.1, 
we describe the Monte Carlo experiment which we use in order to obtain data con-
taining the information about the relations between the risk characteristics and 
design parameters of the BTP. Next, we adopt regression analysis in order to obtain 
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approximations of the analytical expressions relating the value of the problem as 
well as the risk characteristics with the design parameters of the considered BTP .  

1. Formal statement of problem  

The formal model for the class of problems we consider in the paper is the fol-
lowing. Let X1, X2, … be an infinite sequence of random variables. A DM observes 
sequentially the values of the variables and decides whether to stop or to continue. 

If the process is stopped at moment k, the DM gains value 
1

( ),
k

ii
W y X

=
+∑  where 

W is a given real function and y ≥ 0 is the initial state of the process. Function W is 
positive and nondecreasing on the interval (0, T] and is nonincreasing for argu-
ments greater than T. Such problems will be called blackjack type problems (BTP) 
if the random variables are nonnegative and payoff function W achieves its only 

maximum for TXy k
i i =+∑ =1 .  

Our task is to find a stopping rule which maximizes the expected payoff for  
a decision maker. 

1.1. Optimal stopping theory - necessary definitions and results 

Before we present the problem considered in the paper we need to present some 
necessary formal definitions from the theory of optimal stopping. They can be 
found e.g. in [3, 4].  

Let X1, X2, … be a sequence of independent random variables. Let Fn denote σ -
algebra generated by random variables X1,X2,…,Xn in an underlying probability 
space (Ω F,P) A stopping rule is a random variable τ with values in a set of natural 
numbers such that {τ  = n} ∈  Fn for n = 1,2,… and P(τ < ∞) = 1. Let M(n) be  
a class of all stopping rules τ such that P(τ ≤ n) = 1.  

Let (Yn,Fn), n = 1,2,…, be a homogenous Markov chain with values in a state 
space (Y ,B). Let W:R+→R be a Borel measurable function whose values W(y) 
will be interpreted as the gain for a DM when chain (Y n,Fn) is stopped at state y. 
Assume that for a given state y and for a given stopping rule τ, expectation EyW(Yτ) 
= = E(W(Yτ)|Y1 = y) exists. Value EyW(Yτ) is the mean gain corresponding to the 
chosen stopping rule τ.  

Let us define a function Vn by the equation: 

 Vn(y) = 
)(

sup
nMτ W∈

 EyW(Yτ) (1) 

where MW(n) is the set of all stopping rules belonging to M(n) for which expecta-
tions EyW(Yτ) are larger than −∞ for all y∈  Y. Value Vn (y) is called a value of the 
problem of optimal stopping when the initial state of the process is y and the 
boundary (horizon) for the possible number of steps is N.  
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Stopping rule τ* ∈  MW(n) which for all y∈ Y  satisfies the condition 

 EyW(Yτ∗ ) = Vn(y) (2) 

is called an optimal stopping rule in class MW(n).  
Now let us consider an unbounded problem. Let MW denote the set of stopping 

rules satisfying the conditions: P(τ < ∞) = 1 and EyW(Yτ) > −∞ for all y∈  Y. The 
value of such a stopping problem is denoted by V(y) and the stopping rule which 
satisfies a condition analogous to (2), with Vn replaced by V, is called an optimal 
one in class MW.    

1.2. Certain unbounded blackjack type problems and their solutions 

The following proposition providing us with a solution for bounded BTP is 
proved in [1].  
 

Proposition 1. If there exists real number t*, 0 < t* < T, such that  

 W(y) < EyW(Y1) for 0 ≤ y < t*   
and   (3) 
 W(y) ≥ EyW(Y1) for y ≥ t* 

then OSR *
nτ  in class MW(n) for the BTP is given by  

 * *min{1 : }n kk n Y tτ = ≤ ≤ ≥   (4) 

Value Vn(y) of the problem can be calculated for y < t*, with the help of the  fol-
lowing recursive equation: 

 
*

10 *
( ) ( ) ( ) ( ) ( )

t y

n n t y
V y V y x f x dx W y x f x dx

− ∞
− −

= + + +∫ ∫  n = 2,…,N  (5) 

with the initial condition 1 0
( ) ( ) ( )V y W y x f x dx

∞
= +∫ . 

We see that the above OSR is of the so-called threshold type. Such OSRs are 
especially practically interesting because of their very simple structure, compare 
[16-19].  
Now let us consider an unbounded version of such a problem. It follows from well 
-known theorems that under some assumptions, unbounded optimal stopping rule  

τ* can be approximated by bounded optimal stopping rules *
nτ . One of these theo-

rems, see Th.11, p. 77 in [4],  states that if the payoff function is bounded, then  

 
** lim n

n
ττ

∞→
=

 
and  
 ( ) lim ( )n

n
V y V y

→∞
=  (6) 
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It results from the definition of the BTP that without the loss of generality, we 
can assume that the payoff function is bounded. Thus the above mentioned theorem 
yields the following proposition. 
 

Proposition 2. If conjunction (3) is satisfied, then the OSR in class MW for the 
BTP is given by  

 
}:1min{ ** tYk k ≥≤=τ

 (7) 

Condition (3)  is fulfilled in many practically interesting problems, for examples 
see [1]. One of such problems will be considered in detail in the sequel.  

1.3. Important characteristics of OSR 

In the situation where we deal with decision making under uncertainty, the most 
important for the DM features of any decision rule are  the expected payoff  and the 
risk characteristics.   

It results from the two above propositions that value Vn(y) of a bounded prob-
lem can be computed with the help of recursive equation (5). However, usually the 
calculations are extremely arduous, even if we make use of some symbolic mani-
pulation software, such as Maple, Mathematica or Maxima, see [1, 2]. In the case 
of an unbounded problem, there is not even one recursive formula to calculate the 
value. The same problem is connected with the risk. The theory of optimal stopping 
hardly provides us with any results devoted to any risk measures connected with 
the optimal stopping rule.  

In general decision theory there are two basic types of risk concepts: 
– risk connected with the variability of results around a specific value of  payoff 
– risk connected with the possibility of occurrence of undesired results. 

For the BTP, two risk characteristics reflecting both above risk concepts were 
proposed in [2]. Let Z be the random payoff connected with optimal stopping rule 
τ*, i.e. Z = W(Yτ∗ ). Let σZ  denote the standard deviation of optimal payoff Z. The 
following risk measures connected with rule OSR τ* will be considered in the se-
quel:  
– ratio SV of standard deviation of random payoff to expected payoff, i.e. SV = 

= σZ/VN(0) 
– probability of failure PrF, i.e. probability that the process under control will 

cross limit T. 
In the sequel we deal with the problem of modeling the expected payoff as  

well as the two risk characteristics for the unbounded BTP. We combine the Monte 
Carlo method with regression analysis to estimate and express analytically the rela-
tionship between the design parameters of the BTP and the indicated characteristics 
of the OSR. The BTP we will study in detail is described in the next subsection.  
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1.4. Blackjack type problem with linear payoff and exponential step  

In the sequel, the following BTP will be considered in detail. Let the DM observe  
a sequence of i.i.d. random variables having an exponential distribution with the 
density function:  

 [0, )
1

( ) exp( ) ( ) , 0
t

f t t λ
λ λ ∞= − >1  (8) 

Therefore, in this problem the DM approaches limit T with exponential steps of an 
average length λ.  
Let payoff function W be given by the following equation: 

 
,

( )
0,

B y y T
W y

y T

⋅ ≤
=  >

 (9) 

with B > 0.  
According to formula (8), the DM obtains a positive payoff which is propor-

tional to state y of the process, unless the state is greater than limit T. If so, then the 
player gains 0. 

It was shown in [1] that such a problem satisfies the condition given in Proposi-
tion 1 with  

 * ln(1 )
T

t T λ
λ

= − +  (10) 

the OSR τ* given by (7) tells us to continue the observation as long as the sum of 
the initial state and already observed values does not exceed the above given value 
t*.  
This particular subclass of BTP models an important practical decision task con-
nected with the theory of mass-service and called service with work time limits, see 
[1, 2].  

2. Monte Carlo simulations and regression models 

In this section, we describe the Monte Carlo experiment and present the results 
of the regression analysis applied to the obtained data.  

2.1. Monte Carlo experiment  

The idea of the Monte Carlo simulation is to draw sample 1{ } ,miZ  i.e. a realiza-
tion of stochastic process {Z1,Z2,...Zm} composed of independent and identically 
distributed random variables having the same distribution as random optimal pay-
off Z = W(Yτ∗ ). Let f be any Borel function for which expected value Ef(Z) exists. 
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By the strong law of large numbers, average )(
1

1∑ == m
i im Zf

m
f will almost surely 

(a.s.) converge to Ef(Z). In particular, when m tends to infinity, we have 
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and  

 
)Pr()(
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i ia ≤→= ∑ = −∞1

 

In the latter expression, M is the number of the values in the Monte Carlo sam-
ple which are not greater than a.  
In our Monte Carlo simulations, the realizations of random optimal payoff Z are 
generated directly according its definition with the help of the following procedure: 

 
Set z=y; 
While y≤t* Do Set z=z+REX(λ) 
If y<T Set W=B·z 
Else   Set W=0 
Return W  
 

In the above procedure, function REX(λ) returns a pseudorandom number gen-
erated according to the exponential probability distribution having the density func-
tion given by (8), t* is given by (10). We use the procedure to estimate the values 
of the problems for various design parameters as well as other statistics characte-
ristising the performance of the OSR.  

2.2. Design parameters of the problem 

The design parameters of a given BTP as stated in section 2.1 are the following: 
limit T, parameter  λ determining the step probability distribution, and payoff func-
tion parameter B. Let us assume that initial state y of the process equals 0 and let us 
confine ourselves to these situations where the value of problem V(0) is positive. It 
reflects the case where the optimal stopping rule tells the decision maker to make  
at least one observation.  

It appears, see [2], that it is very convenient to consider a parameter K which 
equals ratio T/λ and can be interpreted as the average number of steps needed to 
cover distance T. It allows us to obtain more general results. Because the optimal 
stopping rule is independent of B and the expected value of the payoff as well as 
the value of the problem are linear functions of B, we assume in the sequel that  
B = 1. What is more, to obtain an even more general description, we model the  
ratio  
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(0)V

R
T

=  (12) 

instead of modeling the problem value alone. Thus finally, we have one indepen-
dent variable for our models - parameter K.  

2.3. Monte Carlo estimation of the value of the problem 

It was shown in [2] that the Monte Carlo approximations of the value of the 
problem in the case of bounded versions of the BTP are very accurate. The average 
relative error of these approximations was about 0.3%, see [2]. Thus one may ex-
pect the same in the case of the unbounded BTP. Let VMC, RMC denote the Monte 
Carlo estimate of the values V and R respectively. We compute the estimates of 
VMC and RMC for the values of parameter K changing in interval [1, 30]. In our 
Monte Carlo simulations we assume m = 10 000, compare (11), and for each num-
ber K limit T is chosen at random from interval [50, 250]. Next we adopt the re-
gression analysis to obtain an analytical model relating ratio R given by (12) and 
parameter K. The resulting model has the following form: 

 
2

0 1 2 3

2
4 5 6 7

/ ,
( )

/ ,

K K K λ g
R K

K K K g

β β β β
β β β β λ

 + + + ≤= 
+ + + >

 

with the following least squares (LS) estimates bi for the unknown coefficients βi, 
i = 0,…,8: 

 

b0 = 31.1854, b1 = −11.2167, b2 = 11.5469,  
b3 = −0.917678, b4 = 79.6558, b5 = −94.3583,  
b6 = 0.6659, b7 = −0.00867,    g = 4.8924. 
 

 
Fig. 1. Graph of model for ratio R (in %) as function of K and Monte Carlo approxima-

tion of values obtained for K∈  [1, 30] (dots). Regression values and their approximations 
are almost the same - they can hardly be distinguished in the figure 
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Figure 1 shows both the data obtained by the Monte Carlo experiment, as well 
as the graph of a model for ratio R estimated on the basis of the Monte Carlo data. 
We see that the model values and the Monte Carlo approximations can hardly be 
distinguished.  

Now, to study the quality of the approximations we compute the average rela-
tive error RE between our model and of the Monte Carlo approximations.  
The formula for RE is as follows: 

 
)(/)()(

1
1 i

N

i i
MC

i KRKRKR
N

RE ∑ =
−=

  (13) 

To compute RE, we generate another Monte Carlo sample (called in the sequel 
a validation set) containing N = 4000 records. The value of RE obtained for our 
data is 0.00288, and its value confirms that the regression model is really good.  
In the next part of the paper, we adopt this approach to build models for the risk 
characteristics of the optimal stopping rule.   

2.4. Regression models for risk characteristics  

Model risk characteristics are developed on the simulations described in the 
previous subsection.   

First we present the model for ratio SV. We assume the following form of the 
regression function: 

 
2
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/ ,
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/ ,

K K K g
SV K
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Based on the Monte Carlo data, we obtain the following LS estimates bi of un-
known coefficients βi, i = 0,…,6: 

b0 = 0.6948, b1 = 0.508183, b2 = −0.11354, b3 = 0.00980, b4 = 0.212579,  
b5 = 1.3666, b6 = −0.00260, g = 4.9530 

The model function graph along with the data is presented in Figure 2. 
To check the usefulness of the regression model, we compute the RE given  

by (13) (with R replaced with SV) based on the validation set. The average relative 
absolute error RE equals 0.63%. It confirms good quality of the regression  
model.  

Figure 3 illustrates the dependence between the probability of failure PrF and 
parameter  Κ. The continuous line represents the graph of the regression model 
obtained in our studies. It has the logistic form given by the formula: 

 ))((Exp1

))((Exp
)(PrF
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Fig. 2. Graph of estimated regression  function SV (continuous line) and Monte Carlo  

estimates for SV (dots) when K∈ [1, 30], and m = 10000. Parameter T was chosen at ran-
dom from interval [50, 250]  

 
Fig. 3. Graph of estimated regression  function PrF (continuous line) and Monte Carlo 
estimates for PrF (dots) when K∈ [1, 30], and m = 10 000. Parameter T was chosen at 

random from interval [50, 250]  

Function PF appearing in the above formula is of the form: 

2
0 1 2 3( ) /PF K K K Kβ β β β= + + +  

with the following LS estimates for unknown coefficient βi: 

 b0 = −1.2932, b1 = 1.4272, b2 = −0.05456, b3 = −0.0101    

The relative prediction error in this case (computed on the basis of the valida-
tion set) amounts to 0.00776. The regression model performs really well. 
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Final remarks 

The Monte Carlo experiments - as all computer simulations - are subject to 
a similar weakness; the results may depend on the specific experiment design. 
Thus, we propose here to combine the simulation with regression analysis to gen-
eralize the results for an arbitrary set of possible design parameters. With the help 
of the proposed approach we develop models for the value of an unbound black-
jack type optimal stopping problems with a linear payoff and exponential step as 
well as for the risk characteristics of the OSR. The models allow the decision mak-
er to study the risk characteristics of the OSR for a wide range of design parame-
ters. The estimated prediction errors appear to be very small, which indicates that 
the approach results in the analytical models which are very good approximations 
of the true relationship. 
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