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Abstract. The subject of this paper is the stochastic model of client requests processed by 

an insurance company. The model takes into account the limited duration of insurance con-

tracts and the dependence on time of requests service rate. A closed exponential queueing 

network with single-type messages is used as the model. The goal of the study is to solve the 

problem of finding the optimal number of employees of the insurance company on certain 

time intervals. The study is conducted in the asymptotic case of high network load. The 

results of this paper could be applied to optimize the functioning of insurance companies.  

Introduction 

The process of functioning of an insurance company, concluding same type in-

surance contracts with its clients is considered [1]. It’s supposed that the maximum 

number of clients is K . For instance, it could be the citizenship of a town in which 

the company operates. 4m  of company employees engaged in contracting (insur-

ers). Upon presentation of a claim, it goes through two stages of processing - the 

assessment stage and payment stage. The assessment of claims involved 1m  em-

ployees (evaluators). The payment of the charges involved 3m  lawsuits cashiers. 

Each of the company’s customers can be in one of the following states: 2C  - in 

a waiting state, not going to submit an insurance claim; 1С  - in an assessment 

claim state; 
3

С  - in the cash transactions state; 4C  - in the state of making of 

a contract. Let’s also introduce state 0С , meaning the staying of the company’s 

potential customer in the “external environment”. Assume that processing time of 

claims by evaluators is distributed exponentially with time-depending parameter 

)(1 tµ , the processing time of customers by cashiers is exponentially distributed 

with )(3 tµ , the processing time by insurers is exponentially distributed with )(4 tµ . 

The transition of some insurance claim from state 0С  to state 4C , as well as 

from 2C  to 
i

C , occurs at random instants of time independently on state of other 

claims, and regardless of the time so that probability of transition 0С → 4C  on 
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time interval [ ]ttt ∆+,  equals )()(0 tott +∆µ , and probability of transition 

2C →
i

C  on same time interval equals )()(2 tott
i

+∆µ . Here )(0 tµ , 

)()()( 222 tptt
ii

µ=µ  - are transition rates, because of seasonality of insurance pro-

cesses it’s convenient to represent rates as periodic or piecewise constant functions 

of time; )(2 tp
i

 - time-dependent probabilities of transition from state 2C  to 
i

C , 

1)(0 2 ≤≤ tp
i

, 1,0=i , 1)()( 2120 =+ tptp . 

The closed queueing network (Fig. 1) with K  messages circulating in it, which 

consists of five queueing systems 0S , 1S , 2S , 3S , 4S  could be used as a model of 

the processing of insurance claims processing described above, all queueing sys-

tems consist of K , 1m , K , 3m  and 4m  service lines accordingly [2]. The probabil-

ities of messages (clients) transition between queueing systems are 

113324304 ==== pppp , 0)(2 ≠tp
i

, 1,0=i , in other cases 0=ijp . Service disci-

plines of messages by queueing systems are FIFO. 

 

 

Fig. 1. Network structure 

1. Problem definition 

The state of the insurance company at time instant t  could be described by vec-

tor 

 
( ))(),(),(),(),()( 4321 tktktktktktk == ,  (1) 

where )(tk
i

 - total number of messages that are on stage 
i

C , 4,1=i , and 

∑
=

−=
4

1

0 )()(
i

i
tkKtk  - total number of messages on stage 0C . 

Let’s introduce the following cost factors: 

2D  - company’s revenue per unit of time per customer, when the customer is not 

suing, i.e. message is on stage 2C ; 
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4D  - company’s revenue per unit of time per customer, when the customer is going 

to sign a contract, i.e. on stage 4C  (the amount of the premium the insurer intro-

ducing is taking into account); 

1D  - company’s losses per unit of time per customer that is on stage of evaluating 

of the claim, i.e. on stage 1C  (the amount of the insurance paid and the cost esti-

mate of the claim is taking into account); 

3D  - company’s losses per unit of time from a single claim, when it is on the pay-

ment stage 3C  (the cost of customer service at the payment stage taking into 

account); 

1E  - the cost of keeping one evaluator per unit of time; 

3E  - the cost of maintaining a cashier per unit of time; 

4E  - the cost of keeping one insurer per unit of time. 

Then the company’s earnings at time t  is given by 

44331133114422 )()()()()( mEmEmEtkDtkDtkDtkDtП −−−−−+=
. 

Obviously )(tk  is the Markov process with continuous time and a finite set of 

states, so )(tП  is also a random process. With )(tП  it’s easy to find an expression 

for the average income brought in by one customer at a time interval ],[ 21 TT  : 
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where 








=
K

tk
Mtn

i

i

)(
)(  - the average relative number of customers on stage 

i
C , 

4,1=i , 
1 1
d D= − , 

2 2
d D= , 

3 3
d D= − , 

4 4
d D= , 

K

m
l

i

i = , 4,3,1   =i .  

We are interested in the problem of determining the number of evaluators 1m , 

cashiers 3m  and insurers 4m  on the time interval ],[ 21 TT  , that will maximize the 

average relative income (2) in the average absence of queues at the stages of cus-

tomer service: 
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ii

mmm

      
 (3) 
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To solve (3) it’s necessary, first of all, to find the components of vector 

 ( ))(),(),(),()( 4321 tntntntntn =  (4) 

2. Obtaining the system of differential equations for the mean relative 

number of messages in queueing systems 

The following transitions into state ),()( ttkttk ∆+=∆+  of the considered net-

work during time t∆  are possible: 

– from state ( )tIk ,4−  with probability 

( ) );(1)()()(1)()(
4

1

000 tottkKttottkt

i

i ∆+∆







+−µ=∆+∆+µ ∑

=  

– from state ( )tIIk ,34 −+  with probability 

( )4 4 4
( )min , ( ) 1 ( )t m k t t o tµ + ∆ + ∆ ; 

– from state ( )tIIk ,23 −+  with probability 

( )3 3 3
( )min , ( ) 1 ( )t m k t t o tµ + ∆ + ∆ ; 

– from state ( )tIk ,2+  with probability 

2 20 2
( ) ( )( ( ) 1) ( )t p t k t t o tµ + ∆ + ∆ ; 

– from state ( )tIIk ,12 −+  with probability 

2 21 2
( ) ( )( ( ) 1) ( )t p t k t t o tµ + ∆ + ∆ ; 

– from state ( )tIIk ,31 −+  with probability 

( )1 1 1
( )min , ( ) 1 ( )t m k t t o tµ + ∆ + ∆ ; 

– from state ( )tk ,  with probability 

( ) +∆
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);()()( 22 tottkt ∆+∆µ+
 

– from all other states with probability )( to ∆ . 
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Using the law of total probability and passing to the limit 0→∆t , one can ob-

tain the Kolmogorov system of difference-differentials equations for states proba-

bilities 

[ ]+−−







−µ= ∑
=

),(),()()(
),(

4

4

1

0 tkPtIkPtkKt
dt

tkdP

i

i  

+−µ+ ),()( 40 tIkPt ( )[ ]+−−+µ ),(),()(,min)( 34444 tkPtIIkPtkmt  

( ) ( )[ ] +−+−+µ+ ),()(,min1)(,min)( 3444444 tIIkPtkmtkmt  

( )[ ]+−−+µ+ ),(),()(,min)( 23333 tkPtIIkPtkmt  

( ) ( )[ ] +−+−+µ+ ),()(,min1)(,min)( 2333333 tIIkPtkmtkmt
 

(5) 

[ ]+−+µ+ ),(),()()()( 22202 tkPtIkPtktpt ++µ ),()()()( 22202 tIkPtktpt  

[ ]+−−+µ+ ),(),()()()( 122212 tkPtIIkPtktpt  

+−+µ+ ),()()()( 122212 tIIkPtktpt  

( )[ ]
( ) ( )[ ] ).,()(,min1)(,min)(

),(),()(,min)(

3111111

31111

tIIkPtkmtkmt

tkPtIIkPtkmt

−+−+µ+

+−−+µ+
 

Next let’s consider the case of a large number of messages in the network, 

1>>K , and introduce a vector of relative variables 






=ξ
K

tk
t

)(
)( , it’s possible the 

values belong to a bounded closed set 
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4321

i

ii xixxxxxxG , 

where they are placed in nodes of 4-dimensional lattice at a distance 
K

1
=ε  from 

each other. By increasing K  “fill density” of set G  by possible components of 

this vector is increasing as well, and it becomes possible to assume that is has con-

tinuous distribution with probability density ),(),(
4

txKPKtxp = , Gx∈ , where 

),( txp  is the meaning of the probability density of the random vector )(tξ . 

Let’s denote by 
i
e  4-dimensional zero vector with the exception of i-th com-

ponent that equals ε , 4,1=i , 
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),min( . Rewriting system (5) for density ),,( txp  one get 
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Let’s represent the right-hand side of this system of equations up to terms  

of order of smallness 2
ε . If ),( txp  is twice differentiable by x , then the  

relations: 
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Using it and also 1=εK  one can obtain that the probability density function 

),( txp  of the network states vector satisfies the Fokker-Planck-Kolmogorov equa-

tion up to terms of order of smallness 2
ε : 
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where 

1 2 21 2 1 1 1

2 3 3 3 2 2

3 4 4 4 1 1 1 3 3 3

4

4 0 4 4 4

1

( , ) ( ) ( ) ( )min( , );

( , ) ( )min( , ) ( ) ;

( , ) ( )min( , ) ( )min( , ) ( )min( , );

( , ) ( )(1 ) ( )min( , );
i

i

A x t t p t x t l x

A x t t l x t x

A x t t l x t l x t l x

A x t t x t l x

µ µ

µ µ

µ µ µ

µ µ

=

= −

= −

= + −

= − −∑

           (7) 

);,min()()()(),( 111221211 xltxtpttxB µ+µ=  

22 3 3 3 2 2

33 3 3 3 4 4 4
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44 4 4 4 0
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( , ) ( )min( , ) ( ) ;

( , ) ( )min( , ) ( )min( , );

( , ) ( )min( , ) ( )(1 );
i
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B x t t l x t x

B x t t l x t l x

B x t t l x t x

µ µ

µ µ

µ µ

=

= +

= +

= + −∑

 

);,min()(),(),(

;)()(),(),(

1113113
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µ−==

µ−==
 

);,min()(),(),( 3333223 xlttxBtxB µ−==  

);,min()(),(),( 4444334 xlttxBtxB µ−==  

.0),(),(),(),( 42244114 ==== txBtxBtxBtxB  

Equation (6) is the Fokker-Planck-Kolmogorov equation for the probability 

density function of the Markov process )(tξ . So components of vector of mean 

relative to the number of messages in queueing systems are 

))(...,),(),(()( 221 tntntntn
n+

= , where 







=

K

tk
Mtn

i

i

)(
)( , 4,1=i . According to [3] 

these components satisfy the following system of ordinary differential equations in 

terms of order of smallness )(
2
εO : 

 ( ) ( ( ))
i i
n t A n t′ = , 1,4i = ,  (8) 

or using (7), we obtain the following system: 

 

1 2 21 2 1 1 1

2 3 3 3 2 2

3 4 4 4 1 1 1

3 3 3

4

4 0 4 4 4

1

( ) ( ) ( ) ( ) ( )min( , ( )),

( ) ( )min( , ( )) ( ) ( ),

( ) ( )min( , ( )) ( )min( , ( ))

             ( )min( , ( )),

( ) ( )(1 ( )) ( )min( , (
i

i

n t t p t n t t l n t

n t t l n t t n t

n t t l n t t l n t

t l n t

n t t n t t l n

µ µ

µ µ

µ µ

µ

µ µ

=

′ = −

′ = −

′ = + −

−

′ = − −∑ )).t











  (9) 



M. Matalytski, T. Rusilko 

 

80 

Right-hand sides of (9) are continuous piecewise linear functions. Such systems 

could be solved by splitting the phase space and finding solutions in the areas of 

linearity of the right-hand sides. For instance, in the area corresponding to the case 

of missed queues on client servicing stages 
ii
ltn ≤)( , 4,1=i , system (9) has the 

form 

1

2 21 2 1 1

2

3 3 2 2

3

4 4 1 1 3 3

4

0 1 2 3 4 4 4

( )
( ) ( ) ( ) ( ) ( ),

( )
( ) ( ) ( ) ( ),

( )
( ) ( ) ( ) ( ) ( ) ( ),

( )
( )(1 ( ) ( ) ( ) ( )) ( ) ( ).

dn t
t p t n t t n t

dt

dn t
t n t t n t

dt

dn t
t n t t n t t n t

dt

dn t
t n t n t n t n t t n t

dt

µ µ

µ µ

µ µ µ

µ µ


= −


 = −


 = + −


 = − − − − −


  (10) 

Solving (10) under certain initial conditions, for example 0)0( =in , we obtain 

)(tn
i

, 4,1=i , and we can begin to solve the problem (3). It should be noted that 

the analytic solution of (10) in the case when )(t
i

µ  is a function of time, is diffi-

cult. 

3. The solution of the optimization problem 

Obviously the right-hand side of (10) doesn’t contain 
i
m , 4 ,3 ,1=i , therefore 

it’s solutions )(tn
i

, 4,1=i , also do not depend on 
i
m , 4,3,1   =i . Then the objective 

function of problem (3) has the form 
1 2 1 3 4

( , , , , )W T T m m m =  

1 2 1 1 3 3 4 4
( , )f T T C m C m C m= − − − , where 

i
C  - nonnegative constants, 4,3,1   =i , and 

the solution of problem (3) will be the smallest 
i
m , 4,3,1   =i , which satisfy the 

constraints of the optimization problem. That is the solution of (3) which has the 

form 

 
1 1

m N=
� , 

3 3
m N=

� , 
4 4

m N=
� ,  (11) 

where ))((max
],[ 21

tnKN i
TTt

i
∈

= , 4,3,1   =i , 




∉+

∈
=

Zxx

Zxx
x

  

  

,1][

,
, ][x  - integral part of 

x , Z  - the set of integers. 

In practice, the service rate and probability )(21 tp  are often defined by piece-

wise constant functions of time, for example, with two intervals of constancy: 
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TTtp

TTtp
tp     (12) 

Then system (10) is a system of linear differential equations with constant co-

efficients. And if all the eigenvalues of (10) have strictly negative real parts, then 

there are stationary solutions when +∞→t . In some cases, a steady state is 

achieved within a very short time interval. Therefore, when considering sufficient-

ly large time intervals to solve the optimization problem, sometimes it’s better to 

use the stationary solution of (10). Namely, the optimal number of employees 

should be determined by formulas (11) on each of the intervals of constancy (12). 

Moreover, on time interval ]2,[ 21 TT  we need to consider that 

)(lim
2

)1(

2

tnKN i
Tt

i
→

= , and on time interval ],2( 22 TT  need assume 

))((lim
2

)2(
tnKN i

Tt
i

→

= , 4,3,1   =i . 

3.1. Example 

Let’s assume 000 40=K . The functioning of the insurance company described 

by the following parameters: 

0008.0)364/2sin(0007.0)(0 +π=µ tt , 00008.0)364/2sin(00005.0)(1 +π=µ tt , 

006.0)364/2cos(0005.0)(2 +π=µ tt , 20)364/2sin(11)(3 +π=µ tt , 

9)364/2cos(5.3)(4 +π=µ tt , 008.0)364/2sin(004.0)(21 +π= ttp . 

We will investigate the company’s work on the time interval ]364,0[   with the 

initial condition 0)0( =
i
n , 4,1=i . Let’s solve problem (3). 

The right-hand side of (10) with this condition doesn’t depend on 4,3,1,     =im
i

. 

Therefore, to solve the optimization problem of the insurance company it is suffi-

cient to know the type of solutions of (10) in this case. Hence, for the solution of 

the system it’s possible to use numerical methods. For the numerical solution of 

(10) mathematical computer software Maple could be applied. In particular, func-

tion dsolve with option type=numeric together with method-options which 

allow for the determination of a method of numerical solutions, and function 

odeplot for graphical representation of solution, could be used. 

Figures 2-4 graphically represent the behavior of functions )(tKn
i

, 4 , 3,1=i , 

- the average number of messages on stages of evaluation, payment and contracting 

under the above initial conditions. 
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Fig. 2. Chart of 
1
( )Kn t  

 

Fig. 3. Chart of 
3
( )Kn t  

 
Fig. 4. Chart of )(4 tKn  
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According to (11) we obtain 933.81 ==
�

m , 279.13 ==
�

m , 596.44 ==
�

m . 

Hence, the optimal number of evaluators - 9, cashiers - 2, insurers - 5. 

Conclusions 

These studies are valid only at a high network load, i.e. in case of large number 

K. The accuracy of results increases with the number of messages in the network. 

The procedure for the computer mathematical system Maple that makes it possible 

calculate examples was implemented. The results of this paper could be applied to 

optimize the process of functioning of insurance companies. 
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