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Abstract. Using the methods of the theory of classical potentials, we have constructed  

a Feller semigroup of linear operators that generates a multidimensional diffusion process 

whose diffusion matrix is given by a sufficiently regular function and whose drift vector is 

given by a generalized function of the type of a �-function concentrated on a given hyper-

plane. Such process can serve as a mathematical model for describing the motion of a dif-

fusing particle in a medium where a membrane is located on the hyperplane. The particle is 

receiving “a pulse of infinite intensity” at those instants of time when it is hitting the hyper-

plane. The direction of those pulses are determined by a vector field given on that hyper-

plane. It is important to emphasize that the trajectories of the process constructed are con-

tinuous.  

Introduction 

It is well known that the notion of a diffusion process in modern mathematics is 

intended to serve as a mathematical model for describing the motion of a diffusing 

particle, i.e. a small particle suspended in a liquid or a gas (Brownian motion, 

a phenomenon discovered by the English botanist Robert Brown in 1828). In short, 

that notion singles out a class of continuous Markov processes for which some 

local characteristics of the motion exist, namely, a drift vector and a diffusion ma-

trix (operator) that respectively characterize the macroscopic and microscopic 

components of the motion. 

An important problem is to develop some methods for constructing a diffusion 

process with its local characteristics previously indicated, i.e. vector-valued and  

matrix-valued functions are given and a diffusion process is to be constructed such 

that its drift vector and its diffusion matrix are  represented respectively by the first 

and the second one of the two given functions. If those functions are sufficiently 

regular, one can make use of either the analytical method (the so-called Kolmogo-

rov equation) or the method of stochastic differential equations in order to  

construct a diffusion process desired. Various results of the type are well  

known. 
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It turns out, however, that a diffusion process can be constructed from some 

given functions (mentioned above) being extremely irregular. In particular, a func-

tion representing the drift vector can be a generalized one of the type of a �-
function concentrated on a given surface (a function represented the diffusion ma-

trix should be at the same time a “nice” one). Such a process describes the motion 

of a diffusing particle in a medium where a membrane is situated on the surface. 

The particle receives a pulse “of infinite intensity” every time it hits the surface. In 

[1] and [2] some results of the type are presented in the situation when the direction 

of the pulse coincides with the conormal vector to the surface. Using the ideas of 

[1] - [3], we constructed in our paper [4] the corresponding diffusion process in the 

situation when the direction of the pulse is determined by an arbitrary vector field 

on a given hyperplane while the diffusion matrix was there assumed to be an iden-

tity one. The aim of this paper is to generalize that result on the situation when the 

diffusion matrix is an arbitrary bounded, Hölder continuous and uniformly non-

degenerated matrix-valued function. 

The Feller semigroup of operators that determines the process desired is here 

constructed as a solution of some parabolic conjugation problem with oblique de-

rivatives in one of the two conjugation conditions posed at the points of a fixed 

hyperplane. And the classical solvability of the problem is established here by the 

method of boundary integral equations with the use of a single-layer potential gen-

erated by an ordinary fundamental solution of a parabolic equation with Hölder 

continuous coefficients [3], [5], [6], [7, Ch. IV, §15], [8, Ch. V]. 

Notice that diffusion processes of the kind were constructed in [9], but the Pagni 

special single-layer potential [10] was used there instead of an ordinary one used in 

this paper. It should be mentioned that our problem was also investigated in [11] 

and [14] by the methods of stochastic analysis. 

1. Notations, the problem formulation, assumptions 

We will use the following notations: ℝ� - is a �-dimensional Euclidean space, � ≥ 2; � = ���, … , ��� is a point in ℝ�, �� = ���, … , ����� is a point in ℝ���  

(by �� sometimes denoted a point of the form ���, … , ����, 0�); ��, �� = 

= ∑ �� 	���
��� , if 	�, �
 ⊂ ℝ�; ���, ��� = ∑ �� 	�����

��� , if 	��, ��
 ⊂ ℝ���; �� = 	 ℝ�
� = 	� ∈ ℝ�: �� < 0
, �� = 	 ℝ�

� = 	� ∈ ℝ�: �� > 0
, �	 = ℝ��� is the 

boundary of the domains �	, 
 ∈ 	1,2
, so that ℝ� = ��	 ∪ � ∪ ��; ����� =

= ������������
, ������ = 0, � ∈ 	1, … , � − 1
, �� = 1 is a unit normal vector to � at the point ��, directed into the domain ��; ��, �� = ��, ��, ���		is a point of 

ℝ���; � is a fixed positive number; ℝ�
��� = �0, ∞� × ℝ�; ℝ�

� = �0, ∞� × ℝ���; 

ℝ�
��� = �0, �� × ℝ�; Ω
	� = �0, ∞� × �	, Ω�


	�
= �0, �� × �	, 
 ∈ 	1,2
 is a do-

main in ℝ���; �� is the closure of the set �; ��� = �� =
�

��
, �� =

�

���
, ��� =

��

������
, 	�, �
 ⊂ 	1, … , �
 are the symbols of differentiation; ��� and ��� are the symbols of 
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the partial derivative of the order � with respect to � and any partial derivative of 
the order � with respect to � respectively, where � and � are non-negative integers; 
∇�= ���, … , ����� is a spatial gradient; ∆��� 	��⋅, �� = ��⋅, �� − ��⋅, ���, ∆���	���,⋅� =

= ���,⋅� − ���̃,⋅�; ℬ�ℝ�� is the Banach space of all real-valued bounded and 
measurable functions on ℝ� with the norm ‖�‖ = sup�∈ℝ�|����|; !�ℝ��	is the 
space of all real-valued continuous functions on ℝ�; ℋ��ℝ��, ℋ��ℝ����, " ∈ �0,1� are spaces of Hölder continuous functions (see [7, Ch. I, §1]); !�Ω� 
(!�Ω#�) is the set of all continuous functions on Ω (Ω#), where Ω is a subset of the 
region ℝ�

���; !�,��Ω� (!�,��Ω#�) is the set of all continuous functions on Ω (Ω#) that 
have continuous on Ω (Ω#) derivatives ��� and ���, � = 1, � ≤ 2. Everywhere below $ and % there are some positive constants that do not depend on ��, �� and as a rule 
their values are not important to us. Other notations will be explained as soon as 

they have arisen. 

Suppose that a differentiable operator & is given on ℝ�, � ≥ 2, such that it gen-
erates a homogeneous diffusion process 

 &���� =
1

2
' (������������	�

�,���

+ ' )�����������

���

, (1)

where (����� and )���� are real-valued bounded continuous functions on ℝ� and 

the matrix (��� = *(�����+
�,���

�

 is a symmetric nonnegative definite one. In the 

theory of diffusion processes the matrix (��� and the vector )��� = �)�����
���

�
 are 

called the diffusion matrix and the drift vector respectively (see [1]). Suppose now 

that some continuous bounded functions ,�����, -����� for � ∈ 	1, … , � − 1
, � ∈ 	1, 2
 and �� ∈ � are given such that -����� ≥ 0 and -���� + -���� > 0. 

The problem is to construct a semigroup of linear operators ��, � ≥ 0, such that ��: !�ℝ�� ∩ ℬ�ℝ�� → !�ℝ�� ∩ ℬ�ℝ�� and the function .��, �, �� defined for � ≥ 0, � ∈ ℝ� and � ∈ !�ℝ�� ∩ ℬ�ℝ�� by the equality .��, �, �� = ������ (we 
will write down .��, �� instead of .��, �, ��) is a solution to the following parabol-
ic conjugation problem: 

 ��.��, �� = &.��, ��, ��, �� ∈ Ω
	�, 
 ∈ 	1, 2
, (2)

 .�0, �� = ����, � ∈ ℝ� , (3)

 .��, ��, 0 −� = .��, ��, 0 +�, ��, ��� ∈ ℝ�
� , (4)

 
&�.��, ��, 0� ≡ ' ,�������.��, ��, 0� − 	 -�������.��, ��, 0 −����

���

+ -�������.��, ��, 0 +� = 0, ��, ��� ∈ ℝ�
� . 

(5)
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The equalities (2)-(5) mean that the semigroup ��, � ≥ 0, corresponds to a Feller 
process in ℝ� such that its part in the domain �� ∪ �� is a diffusion process gener-
ated by the operator & and its behaviour at the points of the boundary  � (where a membrane is situated) is determined by a particular case of the general 
Ventsell boundary condition [12]. Namely, our particle, after reaching a point on �, 
can be either reflected into the domain where it has come from or can penetrate 

into the opposite domain; besides it can be drifted along the hyperplane. Combin-

ing all these possibilities, we can say that the membrane (which is situated on �) 
affects our particle in an oblique direction (see Theorem 2 below). 

We are going to construct a bounded (in the spatial variable) classical solution 

of the problem (2)-(5), such that the function .(�, �) belongs to !�,��Ω
	�� ∩!*ℝ�
����������+. 

2. Solving the parabolic conjugation problem 

In order to solve the problem (2)-(5) we apply the method of boundary integral 

equations. Suppose that the coefficients of the operator & and &� satisfy following 
conditions: 

a) �∃�� > 0��∀� ∈ ℝ� , ∀Θ ∈ ℝ��, �(���Θ, Θ� ≥ ��|Θ|�; 
b) (�� , )� ∈ ℋ��ℝ��, λ ∈ �0,1�, 		i, j
 ⊂ 	1, … , d
; 
c) -	���� ≥ 0, �′ ∈ ℝ���, 
 ∈ 	1,2
 and �∃-� > 0��∀�� ∈ ℝ����, -����� +-����� ≥ -�; 
d) ,� , -	 ∈ ℋ�(ℝ���), � ∈ 	1, … , � − 1
, 
 ∈ {1,2}. 

Let /��, �, �� (� > 0, � ∈ ℝ�, � ∈ ℝ�) denote the fundamental solution (f.s.) of 

the operator �� − & (see [1], [2], [5], [7], [8]): 
 /��, �, �� = /���, �, �� + /���, �, ��, (6)

where 
 /���, �, �� = /�
����, � − ��

= �20�����	�det (������� exp 1−
1

2� �(������� − ��, � − ��2 , 

 /� is a term whose singularity, as � → 0 +, is weaker than that of /�. The following 
inequalities are true for the functions / and /� for  2� + � ≤ 2, � ∈ �0, �3 and 	�, �
 ⊂ ℝ�: 
 

 4������/��, �, ��4 ≤ $��������� exp 1−% |� − �|�� 2, (7) 

   

 4������/���, �, ��4 ≤ $����������� exp 1−% |� − �|�� 2. (8) 
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As a function of ��, ��, the principal part /� of f.s. has the derivatives in � and � of 
any order and the inequalities (7) and (8) are satisfied by them for � > 0 and for all 

non-negative integers � and �. Besides, the function /�
����, 5� and its derivatives in � and 5 are Hölder continuous in the argument � (see inequality (11.4) in [7, Ch. 
IV]). We will also use the estimates (13.2) and (13.3) from [7, Ch. IV], which will 

be applied to the differences ∆�
�� *������/��, �, ��+ and ∆��� *������/��, �, ��+ respec-

tively. 

Let us consider the following integrals: the Poisson heat potential 

 .���, �� = 	6 /��, �, ��������
ℝ�

, ��, �� ∈ ℝ�
��� (9)

and the parabolic single-layer potential 

 
.���, �� = 	6 �7 6 /�� − 7, �, ���8(7, ��)

ℝ���

����

�

,

��, �� ∈ ℝ�
���, 

(10)

 

where � and 8 are some given functions. The estimates imply that under some 
assumptions on the densities � and 8 the functions .� and .� are continuous on 
ℝ�
����������, satisfy the equation (2) and also the initial conditions .��0, �� = ���� and .��0, �� = 0. The behaviour of ��.���, ��, as � → �� ∈ �, is characterized in [1], 

[2], [6] - [8]. The most important property of those derivatives is known as the 

theorem on the jump of the conormal derivative of a single-layer potential. Denote 

by 
���
�,����

��
���
 and 

���
�,����

��
���
 the boundary values of the conormal derivative 

���
�,��

��
���
 

as � tends to �� ∈ � from the domains �� and �� respectively. The theorem men-
tioned above says: if the function 8��, ��� is continuous on ℝ�

� , bounded in spatial 

variables and has an integrable singularity in the variable �, then for any point �� ∈ � and � > 0 the following equality  
 

 

9.���, �� ∓�9:���� = 6 �7	 6 9/�� − 7, ��, ���9:����ℝ���

8�7, �������

�

± 8��, ��� (11) 

 

holds true. 

The integral on the right hand side of (11) is called the direct value of the 

conormal derivative of the single-layer potential (10). Its existence follows from 

the inequality 
 

 ;9/�� − 7, ��, ���9:���� ; ≤ $�� − 7�������� exp 1−% |�� − ��|�� − 7 2 (12) 

 

that is held for � ∈ �0, �3, 	��, ��
 ⊂ � with some constants $ and %. 
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Another property concerns the behaviour of the derivatives of the function .� in 
the directions tangent to � at the point �� (in the case under consideration they are 
the partial derivatives ��.���, ��, � ∈ 	1, … , � − 1
). It is known that in the case of 
the function 8 being Hölder continuous in the spatial variables, the tangent deriva-
tives of .� as well as the function .� itself are continuous in � in any neighbour-
hood of �. 

The problem (2)-(5) will be reduced to solving a Volterra integral equation. We 

are going to look for the solution .��, �� of the problem (2)-(5) in the following 
form: 

where .� and .� are defined by the formulas (9) and (10) respectively; the function � in (9) coincides with the initial function in (3); the density 8 in (10) is an un-
known function. In order to determine this, we use the conjugation condition (5) 

that can be written in the following form: 
 

 

&�.��, ��, 0� ≡ ' <,����� −
-����� − -�����(������ (������=���

���

× ��.��, ��, 0� −
-�����(������ 9.��, ��, 0 −�9:����

+ 	 -�����(������ 9.��, ��, 0 +�9:���� = 0,			��, ��� ∈ ℝ�
� . 

(14) 

 

This relation together with (11) imply the following relation for the 8��, ���: 
 

 

8��, ��� = 6 �7 6 >�� − 7, ��, ���8�7, ������
ℝ���

�

�

+ Ψ��, ���,			��, ��� ∈ ℝ�
�  

(15)

where: 

>�� − 7, ��, ��� = *,�� ����, ∇�	
� /�� − 7, ��, ���+ + -���� 9/�� − 7, ��, ���9:���� 	, 

,�� ���� = *,�
������	+
���

���

, ,�
������ =
(������,�����-����� + -����� − -����(������, 

 -���� =
-����� − -�����-����� + -����� , Ψ��, ��� =

(������&�.���, ��, 0�-����� + -����� . 

 .��, �� = 	 .���, �� + .���, ��,			��, �� ∈ ℝ�
���, (13)
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The equality (15) is a Volterra integral equation of the second kind. It follows 

from (7), (8), (12) and also from the estimates (13.2), (13.3) in [7, Ch. IV] that the 

kernel > and the function Ψ satisfy for 0 ≤ 7 < � ≤ �, 	��, ��
 ∈ ℝ��� and � ∈ �0, �3, 	��, ���
 ⊂ ℝ���  the following inequalities respectively: 
 

 |>�� − 7, ��, ���| ≤ $�� − 7������ exp 1−% |�� − ��|�� − 7 2, (16) 

 |Ψ��, ���| ≤ $‖�‖����	,	 (17) 

 ?∆�	��	Ψ��, ���? ≤ $‖�‖������ 4�� − ��@ 4�. (18) 

 

As inequality (16) shows, the singularity of the kernel > is such that it does not 

allow us to apply the method of successive approximations to equation (15). It 

means that this equation should be regularized. With that end in view we introduce 

an integro-differential operator ℰ that acts on a function Ψ according to the follow-

ing rule: 
 

 

ℰ��, ���Ψ = A20 B 99� 6 �7 C Ψ�7, ������
ℝ���

�

�

× 6 �� − 7���� exp 1−
.�

2�� − 7�2�

�

× ℎ��̂ − 7, �� + ,� �����., ����.EF
����

,	 
(19) 

 

where ℎ��, ��, ��� (� > 0, �� ∈ ℝ���	, �� ∈ ℝ���) stands for f.s. of the following 

uniformly parabolic operator with Hölder continuous coefficients 
 

�� −
1

2
' ℎ������������

�,���

, 

ℎ������ = (������ −
(������(������(������ , 

 

and ,� ����� = �,�������������
 denotes the vector whose coordinates are expressed by 

the coordinates of the vector ,�� ���� as follows ,������ = �(���������

�,�
������. 
If the function Ψ in (19) possesses the same properties as the function Ψ in (15), 

then putting Ψ@��, ��� = ℰ��, ���Ψ, we arrive at the relation 
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Ψ@��, ��� = Ψ��, ��� +
1√20 6 �� − 7�����7�

�

× 6 16 11 −
.�� − 72 exp 1−

.�
2�� − 7�2�

�ℝ���

× ℎ�� − 7, �� + ,� �����., ����.2 �Ψ�7, ���
− 	Ψ�7, �������, ��, ��� ∈ ℝ�

� . 

(20) 

 

From this equality, taking into account the property of f.s., the estimates (17), (18), 

and using the following inequality:  

exp 1−% .�� − 72 exp 1−% |�� + ,� �����. − ��|�� − 7 2
≤ exp 1−%� .�� − 72 exp 1−%� |�� − ��|�� − 7 2, 

valid for all 	��, ��
 ∈ ℝ���, . ∈ ℝ�, 0 ≤ 7 < �, with an arbitrary positive constant % and some constant %�, 0 < %� < %, we obtain that the function Ψ@��, ��� as well as 
the function Ψ��, ��� is continuous in the region ��, ��� ∈ ℝ�

�, and it satisfies the 

inequalities (17), (18). 

Further, by the analogy to that of [4] we prove that the equation (15) can be 

transformed by the operator ℰ (applied to both sides of (15)) into the following 
equivalent Volterra equation of the second kind: 

 8��, ��� = H �� H >@�� − 7, ��, ���8�7, ������ + 	Ψ@��, ���, ��, ��� ∈ ℝ�
� ,

ℝ���

�

�
				(21) 

Ψ@��, ��� = ℰ��, ���Ψ, 
 

and for the kernel >@�� − 7, ��, ��� for 0 ≤ 7 < � ≤ �, 	��, �′
 ⊂ ℝ��� the follow-

ing inequality 
 

 4>@�� − 7, ��, ���4 ≤ $�� − 7�������� exp 1−% |�� − ��|�� − 7 2 (22)

 

holds true. 

This inequality allows us to apply the method of successive approximations to 

the equation (21) and, as a consequence, we obtain the function 8. In addition, we 
establish that the solution 8 has the same properties as the function Ψ@ , i.e. 8 is 
continuous in the region ��, ��� ∈ ℝ�

�  and it satisfies the inequalities (17), (18).  

We have from this that the function .��, �� defined by the formulas (13), (21) is 
a classical solution of the problem that in any region of the form ℝ�

���������� satisfies the 
estimate 
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 |.��, ��| ≤ $‖�‖. (23)

As for the uniqueness of the solution constructed, it can be deduced from the re-

sults of [13]. We have thus proved the following assertion. 

Theorem 1. Let the coefficients of the operators & and &� satisfy the conditions 
a)-d), and let the initial function � in (3) be continuous and bounded. Then the 
parabolic conjugation problem (2)-(5) has the unique classical solution that is de-

fined by the formulas (13), (21) and satisfies the inequality (23). 

2. Constructing the diffusion process 

The Theorem 1 implies that we can define a semigroup of linear operators ��, � ≥ 0, whose action on a function � ∈ ℬ�ℝ�� ∩ !�ℝ�� is given by the formula ������ = .��, ��, where the function .��, �� is given by the formulas (13), (21). 
Using the well-known properties of potentials, and also the maximum principle for 

parabolic equations, we can now verify that the constructed semigroup satisfies the 

following additional properties: 

1º) if � ∈ ℬ�ℝ�� ∩ !�ℝ�� for I = 1,2, …, sup!‖� ‖ < ∞ and for all � ∈ ℝ� 

the relation lim →� � ��� = ���� is true, � ∈ ℬ�ℝ�� ∩ !�ℝ��, then for all � ≥ 0, � ∈ ℝ�, the relation lim
 →�

��� ��� = ������ is valid; 
2º) ������ ≥ 0 for all � ≥ 0, � ∈ ℝ�, if  only the function � is non-negative; 
3º) ‖��‖ ≤ 1 for all � ≥ 0. 

These properties of the semigroup �� imply the existence of a transition proba-
bility J��, �, ��� in ℝ� such that ��	���� = 6 J��, �, ���	����.

ℝ�

 

It can be established that a Feller process in ℝ� with this transition probability 

can be constructed in such a way that its trajectories are continuous. Some immedi-

ate calculations show that the local characteristics for this process exist in the fol-

lowing sense: 
 

lim
�↓�

1� 6 ���� 16 �� − �, Θ�J��, �, ���	
ℝ�

2 ��
ℝ�

= 	6 �����)���, Θ���
ℝ�

+ 6 ����, 0��,K����, Θ����
ℝ���

, 

(24)

 

lim
�↓�

1� 6 ���� 16 �� − �, Θ��J��, �, ���	
ℝ�

2 ��
ℝ�

= 6 �����(���Θ, Θ���
ℝ�

, (25)

 

where Θ ∈ ℝ�, � is an arbitrary continuous compactly supported function  
on ℝ�, 
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,K���� = �,K����������
, 

,K����� =
(������,�����-����� + -����� , � ∈ 	1, … , � − 1
, 

,K����� = (������-����. 

 

The equalities (24), (25) mean that the drift vector and the diffusion matrix for 

the process constructed are respectively as follows 

)��� + ,K�����"���	and	(���, 

where �"��� is a generalized function on ℝ� whose action on a test function con-

sists in integrating the latter one over �. 
As a result we have the following statement. 

 

Theorem 2. If the conditions of the Theorem 1 are fulfilled then the semigroup of 

linear operators constructed by solving the conjugation problem (2)-(5) corre-

sponds to a continuous Feller process in ℝ� whose local characteristics exist in 

sense that the equalities (24) and (25) hold true. 
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