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Abstract. A solution of the problem of the thermally induced transverse vibration of an 

annular plate is presented. One assumes that the plate temperature changes by periodic 

oscillation of the heat stream in a ring region on one side of the plate. The axisymmetric 

temperature distribution in the plate is determined by the conductivity equation and corre-

sponding initial and boundary conditions. The heat conduction problem in the plate and the 

problem of transverse vibration of the plate is solved by using the Green’s function method.  

Introduction  

The problem of thermally induced vibration of a plate couples the heat conduc-

tion problem in the plate and the problem of mechanical vibration of this plate 

caused by thermal stresses. Such vibration problems are the subject of many papers 

(for example references [1-3]). 

A study of thermally excited vibration of rectangular and circular plates was  

presented by Ignaczak and Nowacki in paper [1]. The considerations were confined 

to vibrations of plates forced by a temperature field harmonically varying with 

time. The solutions of the problems were found in the form of series by applying 

the finite sine transformation (for a rectangular plate) and the finite Hankel trans-

formation (for circular plate). In paper [2] by Nakajo and Hayashi, the thermally 

induced vibrations of simply supported and clamped circular plates were consid-

ered. In the analysis, it is assumed that the distribution of temperature is linear 

through the thickness and along the radius. To solve this problem, authors used an 

analytical method and the finite element method. Within the paper [3] Kidawa-

-Kukla presents a solution of the problem of the thermally induced vibration of 

a circular plate which is subjected to the activity of a point heat source moving on 

the plate surface along a concentric circular trajectory.  

In this paper, a solution to the problem of the thermally induced vibration of  

a thin annular plate is presented. The thermal moment caused by the temperature 

distribution in the plate is determined and displacements of the plate induced by the 

thermal moment are derived. The solution of the problem is obtained by using 

time-dependent Green’s functions.  
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1. Heat conduction problem  

An annular isotropic plate of an uniform thickness h with  inner radius a and  

outer radius b (Fig. 1) is considered. One side of the plate is subjected by a heat 

souce in an annular region of the plate. The axisymmetric temperature distribution 

in the plate is governed by the heat conduction equation which in cylindrical coor-

dinates is as follows 
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where θ  characterises the stream of the heat, δ( ) is the Dirac delta function, )(tϕ  

is the function describing the change with time of the heat stream 
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Fig. 1. A schema of an annular plate  

Moreover, the following initial and boundary conditions are assumed: 
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Thermally induced vibration of an annular plate subjected to the oscillating heat stream 67 

 
( )

0
,,

=
∂

∂

=ar
r

tzrT
,   

( )
0

,,
=

∂

∂

=br
r

tzrT
 (5) 

 ]),,([),,(
00

thrTTthr
z

T
k −=α
∂

∂
  (6) 

 ]),0,([),0,(
00

trTTtr
z

T
k −=α
∂

∂
  (7) 

where 0α  is a heat transfer coefficient, 0T  is the known temperature of  

a surrounding medium.  

The solution of the problem (1) and (4)-(7) can be presented in the form [1] 
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where G  is the Green’s function (GF) corresponding to the problem of the heat 

conduction in cylindrical coordinates. Taking into account the function g given by 

(2) in equation (8), one obtains  
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The Green’s function G satisfies the zero initial and boundary conditions analo-

gous to the conditions (4)-(7). The GF for annulus with radial and angular depend-

ence is given in paper [3]. For the considered axisymmetric case of annular plate 

the needed GF can be constructed as a product of two one-dimensional GFs, i.e.   
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The Green’s function GR can be written in the form [4] 

    ( )
( )

( ) ( ) ( )

( )
∑
∞

= 







−








 −
−−

−
=

1 2

1

2

1

2

1

2

2

2

222

'
exp

4

1
,';,

m

mm

mmmm

mR

a

b
JJ

rrJ

a

t

aab
rtrG

ββ

φφββτ
αβ

π

π
τ   (11) 

where 

 ( ) 















−
















=

a

u
Y

a

b
J

a

b
Y

a

u
Ju

mmmmm
ββββφ

0110
  (12) 

and 
m
β  (m = 1,2,…) are roots of the equation 
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The Green’s function GZ has the form [4] 
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and 
n
γ  (n = 1,2,…) are roots of the equation 
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The temperature distribution in the plate is obtained by substituting (10)-(11) 

and (14) in equation (9)  
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where (it is assumed:
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2. The problem of vibration of the plate thermally induced by 

sinusoidally varying heat stream 

The vibration of the considered plate is governed by the differential equation  
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where D is a flexural stiffness, µ is a mass per unit area of the plate, w(r,Φ,t) is 

a displacement of the middle surface of the plate at the point (r,Φ) at time t, and  

MT  is a thermal moment. The thermal moment is defined as [1]  
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The presented study deals with the annular plate with simply supported edges, 

which means that the following boundary conditions are satisfied 
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Moreover, the zero initial conditions are assumed 
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Taken into account equation (17) and (20), we obtain the thermal moment  
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where  
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The solution to the vibration problem (19), (21)-(22) of the annular plate can be 

expressed in the form 
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where 
v
G  is the Green’s function corresponding to the considered vibration prob-

lem. 

3. The Green’s function  

The differential equation for the Green’s function ( ), ; ,G r t ρ τ  has the form 
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The function 
v
G  satisfies the zero initial and homogeneous boundary conditions 

analogous to the conditions (21)-(22), i.e.  

 0),( =taG
v

,   0
2

2

=








∂

∂
+

∂

∂

=ar

vv

r

G

rr

G ν

  (26) 

 0),( =tbG
v

,   0
2

2

=








∂

∂
+

∂

∂

=br

vv

r

G

rr

G ν

  (27) 

 ( ) 00, =rG
v

,    0

0

=
∂

∂

=t

v

t

G
  (28) 

The solution of the initial-boundary problem (26)-(28) can be presented in the 

form  
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where  Qm n (r)  are the eigenfunctions of the following boundary problem  
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The general solution of the differential equation (30) can be written in the form 
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where 
00

, YJ  are the Bessel functions of order zero, and 
00

, KI  are the modified 

Bessel functions of order zero. Substituting the function (31) into the boundary 

conditions (31)-(32), we obtain a system of homogeneous equations 
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The non-trivial solution of the system (32) exists for these 
n

λ , which satisfy the 

equation 
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Roots of the equation (35) are determined numerically. The eigenfunctions corre-

sponding to the roots are derived by substituting a solution of the system (34) in the 

equation (33). After transformations, the eigenfunctions can be presented in the 

form  
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Note that the functions 
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R  satisfy the orthogonality condition 
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Taking into account (23)-(24) and using the orthogonality condition (37) in 

equations (20) and (22), we obtain the differential equation 
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and initial conditions 
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The solution of the initial problem (39)-(40) has the form 
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 Finally, on the basis of equations (29), (36), (41), the Green’s function for the 

simply supported annular plate can be written in the following form  
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Taking into account equations (23) and (42) in equation (24), we obtain the dis-

placements of the plate caused by the thermal moment.  

Conclusions 

The solution of the problem of transverse vibration of an annular plate, thermal-

ly induced by a heat stream which acts on a concentric annular part of the plate and 

changes with time sinusoidally, was presented. The problem was based on the dif-

ferential equations of the heat conduction and the transverse vibration of the plate, 

which were complemented by initial and boundary conditions. The temperature 

distribution and the transverse deflection of the annular plate in an analytical form 

were obtained by using the properties of the Green’s function. The presented solu-

tion can be used for numerical investigation of the thermally induced vibration of 

the plate. 
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