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Abstract. In the paper a numerical model of mechanical phenomena in the elastic-plastic 

state built on the basis of the finite element method is presented. This model gives one the 

possibility to simulate the stress and strain in the elastic-plastic state with isotropic and 

kinematic hardening (two-dimensional tasks). The analysis of the influence method for 

determining the plastic multiplier on the calculation rate is present in the example. 

Introduction 

Taking into account the elastic-plastic properties of material is more and more 

common in designing of mechanical systems. Generating plastic strains in the me-

chanical construction is generally disadvantageous, especially if the areas of occur-

rence are large. The ideal solution would be to design a structure in which there are 

no plastic strains. Unfortunately, because of construction and technological limita-

tions, it is impossible. Due to the development of numerical methods it is possible 

to analyze a structure which takes into account the non-linear nature of the materi-

al. Such an analysis allows one to determine the value of plastic strain and areas of 

their occurrence. 

1. Mathematical and numerical model 

In the mathematical model the equilibrium equation is used in the form 

 0=+∇ fσ�  (1) 

where σ  is the tensor of stress, f  is the vector of volume forces. 

Equation (1) is complemented by the constitutive relations in the form of 

 ( )pl
εεDσ ∆−∆=∆ �  (2) 

where ε  is the tensor of total strains, pl
ε  is the tensor of plastic strains, D  is the 

tensor of material constants (elastic matrix).  
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The weak form of the equilibrium equations (1) is as follows [1] 
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where ( )
α
xΦΦ =  are the weight functions, 

α
p  [MPa] is the stress boundary. 

The equation (3) is supplemented by appropriate boundary conditions and takes 

the following form 
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where e

K  is the element stiffness matrix, e
U  the displacement vector, B  is the 

derivative matrix of the weight functions 
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2. Plastic strain, hardening of material  

Modeling stresses in the elastic-plastic state, when the simulated stress exceeds 

the yield point, it is necessary to take into account the plastic strain in the constitu-

tive relationships (2) [2-5]. 

In the presented model to determine the plastic strain the associated plastic flow 

law was used [2, 3] 

 
( )

αβ

αβ

αβ
σ

σ
λε

∂

∂
∆=∆
F

pl  (6) 

where λ  is a scalar plastic multiplier (effective plastic strain), F is the function of 

plastic flow. 

The hardening phenomenon is the change of the plastic surface in the stress 

space. Classical forms of plastic surface changes are: isotropic, kinematic (aniso-

tropic) and combined hardening [2-6]. In this paper the combined hardening has 

not been considered. 

Isotropic hardening is strengthening of material, in which the surface of plastic 

flow is symmetrically increased (Fig. 1a), whereas the hypothesis of kinematic 

hardening takes into account the Bauschinger effect. This hypothesis also assumes 

that the surface of plastic flow moves as a rigid object without changing its shape 

(Fig. 1b) [2, 4]. 
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a) 

 

b) 

 

Fig. 1. Graphical interpretation of the hardening: a) isotropic, b) kinematic 

Isotropic hardening 

The Huber-Mises-Hencky (HMH) condition for a material with isotropic hard-

ening takes the form 

 0=−= YF effσ  (7) 

where effσ  is the effective stress, Y  is the flow stress.  

The effective stress is defined as [2, 3, 5] 

 DD
eff αβαβσσσ

2

3
=  (8) 

where D

αβσ  is the deviatoric stress tensor ( )3/αβγγαβαβ δσσσ −=
D , αβδ  is known as 

the Kronecker delta. 

The derivation of the equation (7) of stress tensor coordinates and the (8) equa-

tion takes the form 
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Substituting (9) into (6) 

 
Y

pl

2

3
D

σ

ε λ∆=∆  (10) 

Introducing (10) into constitutive relationship (2) and appropriate differentiation 

of the plasticity condition (7) leads to the scalar multiplier of the plasticity equa-

tion. For isotropic hardening this factor is as follows 
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where κ  [MPa] is the hardening modulus [2].  

2.1. Kinematic hardening 

In the hypothesis of kinematic hardening the offset plastic surface is described 

by the following equation [2, 5, 6] 

 ( )( ) 0,
0
=− YσF eff ασ

D  (12) 

where αβα  is the tensor representing the displacement of the center of the plastic 

surface (kinematics of hardening). 

The HMH condition in this case has the form (comp. (7)) 

 ( )( ) 02/3
0
=−−− Yασασ

DD  (13) 

where 
0

Y  is the yield point. 

The tensor of displacement of the center the plastic surface ( )α  is written as 

 pl
εα κ

3

2
=  (14) 

Analogously to the case of isotropic hardening, in the kinematics hardening is 
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After all, the equation for a scalar plastic multiplier for kinematic hardening has 

the form 
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The scalar plastic multiplier in the model of an isotropic and kinematic harden-

ing can be determined by using the Newton-Raphson method [1, 7]. 

3. Numerical simulation 

Two tasks of the numerical simulation of stresses in the elastic-plastic state were 

realized. For the calculation the two-dimensional area with dimensions of  

0.1 × 0.1 m (squared) was taken into account, which was divided into a regular 
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geometry consisting of triangular elements (1444 elements, 761 nodes, Fig. 2). It 

was assumed that the Young's modulus 
5

102×=E  MPa, the hardening modulus 

4
102.2 ×=κ  MPa and the Poisson’s ratio .3.0=ν The calculations have been done 

for material with  isotropic and kinematic linear hardening. In the subsequent itera-

tions the scalar plastic multiplier was determined by the direct method (formulas 

(11) and (16)) and the Newton-Raphson method. In the second example it is as-

sumed that the accurate solution is found through calculations obtained using the 

method of Newton-Raphson. The approximation error of the end of the iterations 

was assumed as ( ) 8
1011
−

×+<=
elel

eff
it

YErr σ . 

The accuracy of the calculation for the results of numerical solutions, and the 

number of iterations for the isolated cases are compared. 
 

 

Fig. 2. The considered geometry with the finite element mesh 

The tasks were solved with the assumption of plane stress state [1, 2]. 

 

Example 1 

It was assumed, that the displacement of the edges 
0

x
Γ  and 0

y
Γ  are equal 

( ) 0,0 =yU
x

, ( ) 00, =xU
y

. On the boundary 
1

x
Γ  the condition of the constant in-

crement of boundary load was assumed for the next steps ( )MPa40=
x

p . After 10 

steps the sign of load was changed on ( )MPa40−=
x

p . The error of the end of the 

iterations in the search of the surface of the plastic flow was assumed as 

( ) 4
1011
−

×+<=
elel

eff
it

YErr σ . The obtained results for the steps of growth stress-

es, in which the plastic flow occurred, are shown in Figures 3 and 4. 
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Fig. 3. The results of calculations for the isotropic hardening 
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Fig. 4. The results of calculations for the kinematic hardening 

Example 2 
 

In the presented simulation of stresses, it was assumed that the displacement at 

the edge 
0

x
Γ  was ( ) 0,0 =yU

x
, ( ) 0,0 =yU

y
 (fixed). On the boundary 

1

x
Γ  it was 

assumed that the growth of displacement in every step of the load was 

( ) m.102,1.0
5−

×=yU
x

 After 10 steps the sign of displacement growth was changed 
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on ( ) m.102,1.0
5−

×−=yU
x

 The error of the end of the iterations in this case was 

( ) .1011
2−

×+<=
elel

eff
it

YErr σ  The obtained results are shown in Figures 5 and 6. 

 

 

 

Fig. 5. The results of calculations for the isotropic hardening 
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Fig. 6. The results of calculations for the kinematic hardening 

After solving tasks, the fields of effective stresses (Figs. 7 and 8) were made. In 

Figures 7b, 7c, and 8b, 8c the absolute differences between the exact and the ap-

proximate solution were presented.   
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a)

   

b)

   
c)

  

Fig. 7. The effective stress (exact solution) (a) and the absolute difference, between the 

effective stress, obtained from the assumption the isotropic hardening: b) the direct 

method, c) the Newton-Raphson method 

a)

    

b)

   
c)

    

Fig. 8. The effective stress (exact solution) (a) and the absolute difference, between the 

effective stress, obtained from the assumption the kinematic hardening: b) the direct 

method, c) the Newton-Raphson method 
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Conclusions 

The paper presents an application of finite element methods for solving me-

chanics problems. The numerical simulation of stresses was performed in the elas-

tic-plastic state for material with isotropic and kinematic hardening. The scalar 

plastic multiplier was determined using the direct method and the Newton-Raphson 

method, then the results of the calculations were compared (Figs. 3-6). 

For absolute differences concerning the effective stress (Figs. 7 and 8) the nor-

malized mean square error (NMSE) has been assumed [8] 

 ( ) ( )[ ] ( )[ ]∑∑∑∑
= == =

−=

M

x

N

y

M

x

N

y

yxfyxfyxfNMSE
1 1

2

1 1

2

,/,ˆ,  (17) 

NMSE error values for each of the chosen methods of determining the plastic 

multiplier and for different types of hardening are equal to: 

– for the isotropic hardening (the direct method) NMSE = 5
1032.3043
−

× , 

– for the isotropic hardening (the Newton-Raphson method) NMSE =  

= ,1018.4789
5−

×  

– for the kinematic hardening (the direct method) NMSE = ,10144.7253
5−

×  

– for the kinematic hardening (the Newton-Raphson method) NMSE =  

= .1024.9105
5−

×  

Analyzing the results of numerical tests it can be seen that the use of the New-

ton-Raphson method gives less diversification of errors (Figs. 7 and 8), than when 

using the direct method. In the case of load on the boundary by the stress (Example 

1) the number of iterations is many times greater in Newton-Raphson method, than 

in the direct method (Figs. 3 and 4). In the case of the load by the displacement of 

the boundary (Example 2) the difference between temporal complexity (the number 

of iterations) for these two methods is negligibly small (Figs. 5 and 6). The use of 

Newton-Raphson method leads to greater accuracy of the calculations, although in 

some cases this method causes an unacceptable time of calculations (Figs. 3 and 4). 
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