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Abstract. By the method of classical potential theory, we obtain the integral representation
of the two-parameter operator semigroup that describes the inhomogeneous Feller process
on a closed interval [ry, 1] that is a result of pasting together two diffusion processes given
on (11, r) and (7, 13), respectively, where —o <1, <71 <1, < 00.

Introduction

Let C(D) be the Banach space of all real-valued continuous functions on
a closed interval D = [ry,7;]. Denote by D;, i = 1,2, the two intervals (ry,7) and
(r,13), respectively, where —oo <1y <1 < 1, < 00 and by ¢; the restriction of any
function ¢ defined on D to the closure D;.

Assume that the inhomogeneous diffusion process is given on D;, i = 1,2, and
it is generated by the second-order differential operator Agi), se[0,T] (T>0
fixed), with the domain of definition C2(D;):

d2i(x) dgi ()
o 0T

@ 1 .
A7 @i(x) = Ebi(s: x) i=1,2,

where the diffusion coefficient b;(s,x) and the drift coefficient a;(s,x) satisfy
the conditions:
1) there exist the constants b and B such that 0 < b < b;(s,x) < B for all

(s,x) €[0,T] X D;;
2) foralls,s € [0,T], x,x € D; the next inequalities hold:

a
Ibi(s,) = bi(s, x| < ¢ (Is = s + [x — x|),

a
la;(s,x) —a;(s,x)| < C(|S —s|2+|x—x |“),

where ¢ and «a are the positive constants, 0 < a < 1.
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Define the differential operator 4, s € [0, T], as follows:

9(4s) = {p € C(D): p; €9(4P) for i =12, 4L 0(r) = 4P p(1)},
- Agl)gol(x), x € Dy, (1)
As(p(x) = (2) —_
As @a(x), x €Dy

Consider also three boundary operators of Feller-Wentzell’s type ([1,2]) defined
at the points r, 1y, 1y, respectively,

d - d
Lo@ =60 P2 0,0 4y (e +
+ [ o) - 0ot ),
D,UD,
. , do(r,
10 = ') 2 + a0 + [ 196 - pOlmiCs,an),

Dy

i = 1,2, where

a) the functions q;(s), q2(s), v(s), pi(s), o;(s) are nonnegative and continuous
on [0,T];

b) for a fixed s, u(s,”) and m;(s,”) are the nonnegative measures on D; U D, and
D;, respectively, such that for all bounded measurable functions f on D the in-
tegrals

f |y = FIf OYuGs, dy), f ly = RO, dy)
D;

D,UD,

exist and are continuous on [0, T] as functions of s;
¢) q1(s) + g,(s) > 0 and p;(s) > 0 forall s € [0, T].

It is known (see [2, 3]) that the boundary conditions
Lp) =0, LOp(r) =0, i=12 @)

restrict Ag to the infinitesimal generator of some Feller semigroup on D. Such
a semigroup is constructed in the present paper. Thus, we are interested in the fol-
lowing problem:

Problem. Construct the two-parameter Feller semigroup Ty, 0 <s <t < T,
on D whose infinitesimal generator A is the restriction of A in (1) to the set of all
functions @ € 9(A;) satistying the boundary conditions in (2).

This problem is often called the problem of pasting together two one-
-dimensional diffusion processes or the problem of mathematical modelling of the
diffusion phenomenon on [ry,7,] with three membranes placed at the points
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r, r;, i = 1,2, respectively (see [4-7]). When the diffusion particle reaches the
point r (or r;, i = 1,2), upon the influence of the corresponding membrane, it can
be absorbed according to the rates y (or o;), reflected according to the rates g4, g,
(or p;) and it can jump into the interior according to the rates u (or ;).

We investigate the problem using a purely analytic approach and determine the
desired semigroup by means of the solution of the corresponding parabolic bound-
ary value problem

W+Agi)u(s,x,t)=0, 0<s<t<T, x€D, i=12, 3)
limg u (s, x,t) = (x), x€D, (@)

u(s,r—,t) =u(s,r+,t), 0<s<t<T, ®)]

Lau(s,r,t) =0, 0<s<t<T, 6)

Lu(s,r,t) =0, 0<s<t<T, i=12. (7)

If @ € Y(4y), it is clear that the desired function T ¢ is to satisfy the equation (3)
and the "initial" condition (4). The condition (5) is the consequence of the Feller
property of the desired semigroup Ty;. Since Ts ¢ € 9(A;) when ¢ € 9(4),
the boundary conditions (6) and (7) are also to be satisfied. Taking into account
that the semigroup Ty, is to be defined in C(D), we shall suppose that ¢ € C(D).

A classical solvability of the problem (3-7) is established by the boundary
integral equations method with the use of the ordinary fundamental solution of
equation (3) and associated parabolic potentials. Application of this method per-
mits us not only to prove the existence of the solution of the problem (3)-(7), but to
also obtain its integral representation, which is useful in studying the additional
properties of the constructed process (see [4]).

Note that in the present paper we generalize the result obtained in [4] where
the similar problem was analyzed for the case of two inhomogeneous diffusion
processes given in D; = {x € R: (—=1)'x > 0}, i = 1,2, by the operators Agl),
respectively, with the boundary condition of Feller-Wentzell’s type imposed at the
origin. We should also mention the works [7-10], where the related problems were
studied by the methods of stochastic analysis.

1. Preliminaries

Without loss of generality we may suppose that the coefficients a;(s,x) and
b;(s,x) in (3) are defined on [0,T] X R and the conditions 1), 2) hold for all
(s,x) € 0,T] x R. We may also suppose that the function ¢ in (4) belongs to
Cp(R), where Cp,(R) is the Banach space of real-valued bounded continuous
functions on R with norm
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Il @ ll=sup|@(x)l.
xER

Denote by G;(s,x,t,y), i = 1,2, the fundamental solution of the equation (3) in
[0,T] X R (its existence is assured by 1), 2)). Recall that the function G; is non-
negative, continuously differentiable with respect to s, twice continuously differen-
tiable with respect to x and can be represented as (see [11])

Gi(s,x,t,y) = Zi(s,x,t,y) + Z;(s,x,t,y), (8)

where

(v — x)? }

1
Zi(s,x,t,y) = [2mbi(t,y)(t — s)] Zexp {_m

and the function Z; satisfies the inequality

. _1+2r+p-a (v — x)z
DEDZZi(s xty)| <c(t—s)" 2 expy—h—— ®)

forall 0 <s<t<T, x,y €R, where r and p are the nonnegative integers such
that 2r + p < 2; DI is the partial derivative with respect to s of order r; DY is the
partial derivative with respect to x of order p; c, h are positive constants'; a is the
constant in 2). In addition,

P _l+2r4p (y — x)?
|DIDYGi(s,x,t,y)| < c(t—s)" 2 exp —h——=, (10)

where 0 < s<t<T, x,yER, 2r+p < 2.
Given the fundamental solution G;, we define the parabolic potentials that will be
used to solve the problem (3)-(7), namely the Poisson potential

Uio (5,3, ) = j G, (5,3, 6, Y)0 () dy,
R

and the simple-layer potentials

t
uj1(s,x,t) = f G; (s,x,t,1)V;(7, t)dr,

N
t

Ui (s, x,t) =fGi (s,x,T,1)V;y2 (7, t)dr,

N

' We will subsequently denote various positive constants by the same symbol ¢ (or h).
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where 0 <s<t<T, x€ Ei ; @ is the function in (4); V,, k = 1,_4, are continu-
ous functions in s € [0, t) satisfying the inequality
Vi(s, )| < c(t —s)"1*¢

for any € > 0.
Note that the functions u;y, uj;, u;» satisfy the equation (3) in the domains

[0,t) X D;, [0,t) X (D; \ {r}), [0,t) X (D; \ {r;}). respectively, and the initial
conditions

liTIrtl up (5, x,t) = (x), x €D,
S

li?tl u;; (5,x,t) =0, x€D;\{r}, li%l Uy, (5,x,t) =0, x€D;\({r}
S S
In addition, the relations
_2rip
|D§D§ui0(s,x,t)|Scll(pII (t—=s) 2z ,2r+p<2, (11)

¢
ou;, (s, r+,t) Vi(s,t) 0Z(s,1,T,7)
=4 V:(t,t)d 12
ox O ox i(mHd, (12)
S

t
Vi+2(si t)+faZi,(S'ri'T'ri)
bi(s,1;) dx

Qupp(s, 1, t)
0x h

(—1) Visa (3, t)dr, (13)

hold.
Note that the last two relations follow from the theorem on the jump of the
conormal derivative of a simple-layer potential (see [12, Ch. V, §§2-4]).

2. Solution of the boundary value problem (3-7)

The aim of this section is to establish the classical solvability of the boundary
value problem (3-7).

We find the solution of (3-7) of the form (x ED;, 0 < s <t <T)
u(s, x,t) = ujo(s, x,t) + uj1 (s, x,t) + up (s, x,t) (14)

with the unknown functions Vj,, k = 1,4, to be determined. Substituting (14) into
boundary conditions (5-7), we get, upon using the relations (12, 13), the following
system of integral equations for V;:

t

2
Z f(—l)i[Gi(s, r, T, )Vi(t,t) + G;(s,7, 7, 1)V (T, t)]dT = A(s, t), (15)

i=1g
0<s<t<T,
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2 (qis)v, (s OIS
NE [R (5, Vi1, £) + Riy2 (5, Vi (1, )] d1

i=1 b (16)
=A(s,t), 0<s<t<T,
4 Vl t
P 0 (M50 M5 W an

=Y'L-(s,t), 0<s<t<T, i=12,

where

A(s,t) = uqo(s, 1, t) —uye(s,r,t), A(st) = —Z Ps(i) Ujo(s, 1, 1),
i=1
Yi(s,t) = =L uyo (5,7 0),
Ri(s,7) = PGi(5,%, T, ey Rir2(5,7) = POGi(5,%,70,7) ey
Ni(5,7) = LPGi(5, %0 xery  Nis2(5,7) = LYGi(5,%,7, 1) lxery

POf(x) = (=1)*1q;(s )&+Mf( x) + J[f(x)—f(y)]ﬂ(s,dy)-

Note that equation (15) is the Volterra integral equation of the first kind and equa-
tion (16), as well as two equations in (17), are the ones of the second kind. Apply-
ing the Holmgren transform

t
2d 1
EA(s, t) = \/;Ef(p —5s) 2A(p,t)dp, 0<s<t<T,
S

to both sides of (15), after some straightforward simplifications, we obtain the
equivalent Volterra integral equation of the second kind

2 t
D107 100 + 0025 Wm0l

= d(s,t),

(18)

where

1 [ 3 2 1
0(5,6) == [ (p = 5)72(8p,0) = 85, 0)dp — | 2460 =)

s
Qi(SJ T) = SSTZiI(S' T, 7'), Qi+2 (S, T) = SSTGL'(SJ nT, ri)'
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Next, by means of elementary transformations we reduce the system (18), (16),
(I7)to

¢
Vi(s, t) = K;; (s,D)Vi(t,t) + ¥;(s,t), =14, (19)
;! j j
where
o1 G- _
W@@=fmﬂ@@o+enlﬁ;fmo) i=12
di(s)Yi_2(s,t), i =34,
{d-(S) (—R-(s )+ (—1)”1'%‘—"(5)(2-(5 r)) i=12
Kij(S,T) = J ! V bg_i(S,T) !

—d;(s)Nj(s,7), (i=j or i—2=j) and (=34,
0, otherwise.

bi(s,7)y/b3-i(s,7)

) 1I2I
m@)={%J%@m)+%Jh@m)
bi_»(s,1i-2) i =34

Pi-2(s)

Let us estimate the functions W; in (19). For this purpose, we consider the
integrals

Ii(s,t) = J[uio(s' 1, t) —up(s,y, ) mi(s, dy), i=12,
D;

t
1@0=]@—@%mmo—A@om@

which are the terms in the expression for ¥;. Applying the Lagrange formula to the
integrand u;o (s, 1, t) — u;o(s, y, t) we obtain

du;o(s, x, t)
Ii(s,t) = f(y - ri)Tlx:ri+9(y—ri)7Ti(S' dy), 0<6<1.
D;

Then using the inequality (11) when r = 0 and p = 1, we find that

1
s, ) <cllell(—s)2.
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To estimate the function J (s, t) we write it in the form

S+t

2
J(s,t) = J (p— S)_%(A(p, t) — A(s, 0))dp
c’ (20)
3
+ [(p=97200.0) - A5, 0)dp,

s+t
2

Denote the first term in (20) by J; (s, t) and the second one by J, (s, t). If we apply
the Lagrange formula to the increments A(p,t) — A(s, t) in the expression for J;
and then use the inequality (11) (whenr = 1,p = 0), we get

1S+t

2
_1 0JA(sg,t)
GOl || (0= 97 08 msrapsdp
S

s+t

‘ _1 _1
Scll(pllf (p—=s)z[t—s—0(p—s)]<cllel(t—s) 2.

For J,(s,t) we have

t—s _% t 1
V2(s, )] < (T) J(IA(P, DI+ 1A DDdp<cligl(t—s) 2

S+t

2

Estimating all the rest of the terms in formula for ¥';, we conclude that

W,(s, )| < co ll @ Il (E—5)72, @1

where ¢ is some positive constant.

Proceeding by the same considerations as the ones leading to the estimation
(21) we can also investigate the kernels K;; in (19). We obtain the following result:
the kernels K;;(s,7),0 < s <7 <t < T, can be represented as

Kij(s,©) = Hyj(s,7) + H{;(5,7), i,j =14, (22)

where H;j(s,7) =
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d;(s) J-[Zj(s,y,r,r)—Zj(s,r,r,r)]u(s,dy), i,j =12,
DY)
T4 [ By - Gt i), i=i=34
Df_z(rj_z)

0, otherwise,
and Hj; (s, 7) satisfy the inequality

|Hij(s,D)] < h(8)(x — )12, (23)
Here &, h(§) are any positive number and some constant depending on &,
respectively; Dj‘S (x) ={y € D;: |y — x| <&} Note also that
Hi;j(s,1) =0 when i€{34}n{i+#jandi-2#j}

Thus kernels K;; have non-integrable singularity, which is caused by H;;, and
therefore we do not know yet whether a solution of (19) exists. We shall see
presently that it is nevertheless possible to obtain the solution of (19) by the
method of successive approximations, i.e.,

Vi(s,t) = z v® (st), 0<s<t<T, i=14, (24)

where

VO, ) = Wi(s,0),

4
(k)(s t) = z f K;; (s, T)I/}-(k_l)(r, t)ydr, k=12,..

Let us estimate the function V(l). We can write
¢

v (s, ) = ZIKU (s, VO, dr = ZJHU (s, 1)W(z, t)dr +

Jls j=1s

+Z f HY; (5, D (x, O)dt = T (s,6) + 70 (s, 8) =

Jj=1s
t

|( fH (s, D)¥(7, t)dT+ZfHU (s, D)¥(r,t)dr, i=12,
={J=1s =1

t t
f H,; (s, D)W, (x, )d + Z f H (5, 1)%(z, dt, i =34
\ jefiitays
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From (21) and (23) it follows that

|I7i(1)(s, t)l <4coh(8) l o | —5—/—== ( ) ( ) S)_l_Ta, =14 (25)

(139"

To show how we estimate ‘71'(1) it suffices to consider any of the integrals
fst H;; W;dt. Let us take i, j = 1,2 and denote these integrals by I; (s, t). Then

t
3 d; 1 1 -(y-n?
|Iij(5: t)| < C(’"(p—"l(s) f(t —1) 2(t—5s) 2dt f (eZb-(r—S) — 1)#(5' dy)| =
N

V2mh it
J(r
< I|<p||d (s) -8(y-1)%
= SPTAS) f(t—‘r) z(r—s) zdrfa()y(sdy)f —eZb(‘rs)dQ
o( )2 t —9(y—r)2.t—_1:
co o Il di(s) J J —0(y-r J o 2b-(t=5) T=s
=T o —ru(s,d — e 2b:(t-9s) drl,
W (y =nuls,dy) | (y =) T -

pd(r) s (t—1)2(Tr—9)2

where b is the constant in 1). The change of variables z = E in the inner integral
in the last relation leads to

. coll@lldy(s) -8(y-1? 1 ze-n?
1| < 5o s B (t—s) J, s(r)(y r)u(s, dy)f (y—r)e @ d [z 2 “dz|=
(
<colloll(t—s)" 2 & s) f |y —rlu(s, dy).
Do (r)

It is obvious that the same estimate holds for i = 3,4 (with integral term
fo_z(ri—z) |y = 1i2|mi—2(s, dy)).
Introducing the following notations:

d = max {d;(s): i=1,4}

S€E[0,T]

m()——max{z [ y=ri.an, [ 1y-niman, =12,

b s€[0,T]
HG! DY (r)

we derive the estimate

- _1
VP60 <com@ gl -5z =14 (26)
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Combining (25) and (26), we conclude that

2 ra 1
Vsl <colone- 5z 4h(5)“:£72 T(3)
r(~")

By means of the method of mathematical induction, we prove that the terms
Vi(k) of series (24) satisfy the inequalities

+m(d) |, 27)

k
1
BP0 <clol -2 ) - PmE)y, k=012 (@8
n=0

where

(i (§) r ()

r(=5)

a®™ = , n=012,..k.

Fix § = §, such that m(§y) < 1. Then in view of (28), we establish that

k
0 0 (MT%F (Z)) 1
1 & \T=m(8y) 2 r(z)
kZOM")(s, Df<clol@-s zkz F(1°+2ka) Ty

Hence, the series (24) converges absolutely in 0 < s < t < T. This implies that
functions V;, i = 1,4, exist and satisfy the inequality

1
Vis, )l <clloll(t—s)z 0<s<t<T, (29)

We have thus constructed a solution u(s, x, t) of the problem (3-7) which is of
the form (14). Using the relations (8-11) and the estimate (29) it is easy to verify
that

u(s,x,t) € C¥2([0,t) x D; U D,) n C([0,t] x D).

Concerning the uniqueness of the solution of (3-7), note that it follows from the
maximum principle (see [12, Ch. II]).

We have proved the following theorem:

Theorem 1. Let the conditions 1), 2) and a)-c) hold, and let ¢ € C(D). Then the
problem (3-7) has a unique solution

u(s,x,t) € CY2([0,t) x D; U D,) n C([0,t] x D).
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If the coefficients of operators Agi) are extended to [0, T] X R such that properties
1), 2) hold for all (s,x) € [0,T] X R and the function ¢ is extended to R such that
¢ € Cp(R), then the solution of (3-7) can be represented as

t

u(s,x, t) = fGi (s,x,t,v)p(y)dy + f G; (s,x,T,r)V;(t,t) +

R N
t

+f G (5,x,7,1)Visa(r,t)dr, 0<s<t<T, x€D; i=12,

N

where G; is the fundamental solution of % + Agl) and the collection (V) k=14 is
the solution of the system of Volterra integral equations of the second kind (19).

Remark. The assertion of uniqueness also implies that the solution
u(s,x,t), 0<s<t<T, x€ D, of problems (3-7) does not depend on which
extensions of functions a; (s, x), b;(s,x) and ¢(x) are chosen.

3. Diffusion phenomenon on [rq,7;]
We introduce the two-parameter family of linear operators
Ta@(x) = u(s,x,t,9), 0<s<t<T, x€D, ¢€C,(R), 30)

where u(s, x, t, @) is the solution of the problem (3)-(7) with function ¢ in (4), and
proceeds to study its properties in the space C;, (R).
First we note that

lim Tg 0, (%) = Tgep(x), 0<s<t<T, xE€D,
n—oo
for every sequence of functions ¢,, € C,(R) such that
sup l@, I< oo and lim @, (x) = @(x), x€D.
n n—-oo

This property easily follows from Lebesgue bounded convergence theorem.
We next prove that the operators Ty, 0 < s <t < T, are positivity preserving.

Lemma. If ¢ € C,(R) and ¢(x) = 0 for all x € D, then Ty¢(x) = 0 for all
0<s<t<T, x€D.

Suppose that Ty, (x) takes negative values in [0,t] X D and denote by m, its
minimum in [0,¢] X D. Then, by the minimum principle, value m, is attained at
some point (sg,xg) € (0,t) X {ry,7,72}. In case xo =7 (i.e., T 1 0(r) = m, <0),
the inequalities
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VO <0 [ [Tye0() = Toep (s, dy) <0
D,UD,

hold. Furthermore, Theorem 14 in [12, p. 69] implies that

aT. r— aT. r+
Sot(lo( ) < 0’ Sot(lo( ) > 0.
0x 0x

But since q1(so) + q2(so) > 0, we have L T () < 0. This contradicts (6).
Similarly, the case xo = 1;, i € {1,2} leads us to the inequality Lg Ts . (r;) <0
which contradicts (7). A contradiction we arrived at indicates that m, > 0. This
completes the proof of the lemma.

By similar considerations to those in proof of Lemma 1, one can easily verify
that the operators T, are contractive, i.e.,

T 11, 0<s<t<T.
Note also that the operator family T; has a semigroup property
TSt=TSTTTt' OSSSTStST, (31)

This property is a consequence of the assertion of uniqueness of the solution of the
problem (3-7). Indeed, considering the problem (3-7) in the time interval [s, 7] with
the function T ¢, T <t <T, taken as the "initial" function, we deduce that
Te: (Trep), 0 <s <t <t<T,is the solution of (3-7) with the function ¢ in (4),
and hence (31) follows.

These properties allow us to assert (see [13], Ch. [I) that Tg;, 0 < s <t < T, is

a Feller semigroup on D for which there exists a unique transition function
P(s,x,t,”) on D such that

Tsep(x) = JP (s,x,t,dy)ey), 0<s<t<T, x€D, ¢€C,(R).

D

Thus, we have proved the following theorem:

Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter
semigroup of operators Tg;, 0 < s <t < T, defined by formula (30) describes the
inhomogeneous Feller process on D such that on D; and D, it coincides with the
diffusion processes generated by Agl) and A_E.Z), respectively, and its behavior at
each of points r, r;, i = 1,2, is determined by the corresponding boundary condi-
tion in (2).
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