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Abstract. By the method of classical potential theory, we obtain the integral representation 

of the two-parameter operator semigroup that describes the inhomogeneous Feller process 

on a closed interval [��, ��] that is a result of pasting together two diffusion processes given 
on (��, �) and (�, ��), respectively, where −∞ < �� < � < �� < ∞. 

Introduction 

Let �(�) be the Banach space of all real-valued continuous functions on 

a closed interval � = [��, ��]. Denote by �� ,  � = 1,2, the two intervals (��, �) and 

(�, ��), respectively, where −∞ < �� < � < �� < ∞ and by ��  the restriction of any 

function � defined on � to the closure ��. 
Assume that the inhomogeneous diffusion process is given on �� ,  � = 1,2, and 

it is generated by the second-order differential operator ��(�),  � ∈ [0,�] (� > 0 

fixed), with the domain of definition ��(��): 

��(�)��(	) =
1

2

�(�, 	)

����(	)�	� + ��(�, 	)
���(	)�	 ,  � = 1,2, 

where the diffusion coefficient 
�(�, 	) and the drift coefficient ��(�, 	) satisfy 

the conditions: 

1) there exist the constants 
 and  such that 0 < 
 ≤ 
�(�, 	) ≤  for all 

(�, 	) ∈ [0,�] × ��; 
2) for all �, � ′ ∈ [0,�],  	, 	 ′ ∈ �� the next inequalities hold: 

|
�(�, 	) − 
�(� ′, 	 ′)| ≤ � �|� − � ′|�� + |	 − 	 ′|��, 

|��(�, 	) − ��(� ′, 	 ′)| ≤ � �|� − � ′|�� + |	 − 	 ′|��, 

where � and � are the positive constants, 0 < � < 1. 
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Define the differential operator ���,  � ∈ [0,�], as follows: 

������ = �� ∈ ����: �� ∈ � �������  for � = 1,2, ��������� = ����������, 

����(	) = ���(�)��(	),  	 ∈ ��,��(�)��(	),  	 ∈ ��.

� (1) 

Consider also three boundary operators of Feller-Wentzell’s type ([1,2]) defined 

at the points �, ��, ��, respectively,  

������ = ����� ���� −��	 − ����� ���� +��	 + �������� + 

+ � [

��∪��

�(�) − �( )]!(�,� ), 

���������� = (−1)�"�(�)
�������	 + #�(�)�(��) + �[

��

�(��) − �( )]$�(�,� ), 

� = 1,2,	 where  

a) the functions ��(�), ��(�),  �(�), "�(�), #�(�) are nonnegative and continuous 

on [0,�]; 
b) for a fixed �, !(�,⋅) and $�(�,⋅) are the nonnegative measures on �� ∪ �� and ��, respectively, such that for all bounded measurable functions & on � the in-

tegrals 

� |

��∪��

 − �|&( )!(�,� ),  � |

��

 − ��|&�( )$�(�,� ) 

exist and are continuous on [0,�] as functions of �; 

c) ��(�) + ��(�) > 0 and "�(�) > 0 for all � ∈ [0,�]. 

It is known (see [2, 3]) that the boundary conditions 

 ���(�) = 0, ��(�)�(��) = 0,  � = 1,2, (2) 

restrict ��� to the infinitesimal generator of some Feller semigroup on �. Such 

a semigroup is constructed in the present paper. Thus, we are interested in the fol-

lowing problem: 

Problem. Construct the two-parameter Feller semigroup ��	 ,  0 ≤ � < ' ≤ �, 

on � whose infinitesimal generator �� is the restriction of ��� in (1) to the set of all 

functions � ∈ �(���) satisfying the boundary conditions in (2). 

This problem is often called the problem of pasting together two one- 

-dimensional diffusion processes or the problem of mathematical modelling of the 

diffusion phenomenon on (��, ��) with three membranes placed at the points 
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�, �� ,  � = 1,2, respectively (see [4-7]). When the diffusion particle reaches the 

point �	(or �� ,  � = 1, 2), upon the influence of the corresponding membrane, it can 

be absorbed according to the rates � (or #�), reflected according to the rates ��, ��	 
(or "�) and it can jump into the interior according to the rates ! (or $�). 

We investigate the problem using a purely analytic approach and determine the 

desired semigroup by means of the solution of the corresponding parabolic bound-

ary value problem *+(�, 	, ')*� + ��(�)+(�, 	, ') = 0,  0 ≤ � < ' ≤ �,  	 ∈ �� ,  � = 1,2, (3) 

 lim�↑	 + (�, 	, ') = �(	),  	 ∈ �, (4) 

 +(�, �−, ') = +(�, �+, '),  0 ≤ � < ' ≤ �, (5) 

 ��+(�, �, ') = 0,  0 ≤ � < ' ≤ �, (6) 

 ��(�)+(�, �� , ') = 0,  0 ≤ � < ' ≤ �,  � = 1,2. (7) 

If � ∈ �(��), it is clear that the desired function ��	� is to satisfy the equation (3) 

and the "initial" condition (4). The condition (5) is the consequence of the Feller 

property of the desired semigroup ��	. Since ��	� ∈ �(��) when � ∈ �(��), 

the boundary conditions (6) and (7) are also to be satisfied. Taking into account 

that the semigroup ��	 is to be defined in �(�), we shall suppose that � ∈ �(�). 

A classical solvability of the problem (3-7) is established by the boundary 

integral equations method with the use of the ordinary fundamental solution of 

equation (3) and associated parabolic potentials. Application of this method per-

mits us not only to prove the existence of the solution of the problem (3)-(7), but to 

also obtain its integral representation, which is useful in studying the additional 

properties of the constructed process (see [4]). 

Note that in the present paper we generalize the result obtained in [4] where 

the similar problem was analyzed for the case of two inhomogeneous diffusion 

processes given in �� = {	 ∈ ℝ: (−1)�	 > 0},  � = 1,2, by the operators ��(�), 
respectively, with the boundary condition of Feller-Wentzell’s type imposed at the 

origin. We should also mention the works [7-10], where the related problems were 

studied by the methods of stochastic analysis. 

1. Preliminaries 

Without loss of generality we may suppose that the coefficients ��(�, 	) and 
�(�, 	) in (3) are defined on [0,�] × ℝ and the conditions 1), 2) hold for all 

(�, 	) ∈ [0,�] × ℝ. We may also suppose that the function � in (4) belongs to �
(ℝ), where �
(ℝ) is the Banach space of real-valued bounded continuous 

functions on ℝ with norm 
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∥ � ∥= sup
�∈ℝ

|�(	)|. 

Denote by ,�(�, 	, ',  ),  � = 1,2, the fundamental solution of the equation (3) in 

[0,�] × ℝ (its existence is assured by 1), 2)). Recall that the function ,�  is non-

negative, continuously differentiable with respect to �, twice continuously differen-

tiable with respect to 	 and can be represented as (see [11]) 

 ,�(�, 	, ', ) = -�(�, 	, ', ) + -��(�, 	, ', ), (8) 

where 

-�(�, 	, ', ) = (2$
�(', )(' − �))�� exp	 �−
( − 	)�

2
�(', )(' − �)
., 

and the function -�� satisfies the inequality 

/������-��(�, 	, ', )/ ≤ �(' − �)

�������

� exp	 �−ℎ
( − 	)�' − � . (9) 

for all 0 ≤ � < ' ≤ �,  	, ∈ ℝ, where � and " are the nonnegative integers such 

that 2� + " ≤ 2; ��� is the partial derivative with respect to � of order �; ��� is the 

partial derivative with respect to 	 of order ";  �, ℎ are positive constants
1
; � is the 

constant in 2). In addition, 

/������,�(�, 	, ', )/ ≤ �(' − �)

������

� exp	 �−ℎ
( − 	)�' − � ., (10)

where 0 ≤ � < ' ≤ �,  	, ∈ ℝ,  2� + " ≤ 2. 

Given the fundamental solution ,� , we define the parabolic potentials that will be 

used to solve the problem (3)-(7), namely the Poisson potential  

+��(�, 	, ') = �,�
ℝ

(�, 	, ', )�( )� , 

and the simple-layer potentials 

+��(�, 	, ') = �,�	

�

(�, 	, 0, �)1�(0, ')�0, 

 +��(�, 	, ') = �,�	

�

(�, 	, 0, ��)1���(0, ')�0, 

                                                      
1 We will subsequently denote various positive constants by the same symbol � (or ℎ). 
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where 0 ≤ � < ' ≤ �,  	 ∈ ��;  � is the function in (4); 1�,  2 = 1,4, are continu-

ous functions in � ∈ [0, ') satisfying the inequality  

|1�(�, ')| ≤ �(' − �)��� 

for any 3 > 0. 

Note that the functions +��, +��, +�� satisfy the equation (3) in the domains 

[0, ') × �� , [0, ') × (�� ∖ {�}), [0, ') × (�� ∖ {��}), respectively, and the initial 

conditions  

lim
�↑	

+�� (�, 	, ') = �(	),  	 ∈ �� , 
lim
�↑	

+�� (�, 	, ') = 0,  	 ∈ �� ∖ {�}, lim
�↑	

+�� (�, 	, ') = 0,  	 ∈ �� ∖ {��}. 

In addition, the relations 

/������+��(�, 	, ')/ ≤ � ∥ � ∥ (' − �)

����
� , 2� + " ≤ 2, (11)

*+��(�, �∓, ')*	 = ±
1�(�, ')
�(�, �)

+ �*-��(�, �, 0, �)*	
	

�

1�(0, ')�0, (12)

*+��(�, �� , ')*	 = (−1)�
1���(�, ')
�(�, ��) + �*-��(�, �� , 0, ��)*	

	

�

1���(0, ')�0, (13)

hold. 

Note that the last two relations follow from the theorem on the jump of the 

conormal derivative of a simple-layer potential (see [12, Ch. V, §§2-4]). 

2. Solution of the boundary value problem (3-7) 

The aim of this section is to establish the classical solvability of the boundary 

value problem (3-7).  

We find the solution of (3-7) of the form (	 ∈ �� , 0 ≤ � < ' ≤ �) 

 +(�, 	, ') = +��(�, 	, ') + +��(�, 	, ') + +��(�, 	, ') (14) 

with the unknown functions 1�,  2 = 1,4, to be determined. Substituting (14) into 

boundary conditions (5-7), we get, upon using the relations (12, 13), the following 

system of integral equations for 1�: 
4��−1��(,���, �, 0, ��1��0, '� + ,���, �, 0, ���1����0, '�)�0	

�

�

���

= Δ��, '�, 

	 0 ≤ � < ' ≤ �, 

(15)
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45��(�)1�(�, ')
�(�, �)
+ �[

	

�

6�(�, 0)1�(0, ') + 6���(�, 0)1���(0, ')]�07�

���

= Λ��, '�,  0 ≤ � < ' ≤ �, 

(16)

"����1�����, '�
���, ��� + �[

	

�

8�(�, 0)1�(0, ') + 8���(�, 0)1���(0, ')]�0 

= ϒ���, '�,  0 ≤ � < ' ≤ �,  � = 1,2, 

(17)

where 

Δ(�, ') = +��(�, �, ') − +��(�, �, '),  Λ(�, ') = −49�(�)�

���

+��(�, �, '), 

ϒ�(�, ') = −��(�)+��(�, �� , '), 
 6���, 0� = 9����,���, 	, 0, ��|��� , 6�����, 0� = 9����,���, 	, 0, ���|��� , 
 8�(�, 0) = ��(�),�(�, 	, 0, �)|���� , 8���(�, 0) = ��(�),�(�, 	, 0, ��)|���� , 
 9�(�)&(	) = (−1)�����(�)

�&(	)�	 +
�(�)

2
&(	) + �(&(	) − &( ))

��

!(�,� ). 

Note that equation (15) is the Volterra integral equation of the first kind and equa-

tion (16), as well as two equations in (17), are the ones of the second kind. Apply-

ing the Holmgren transform 

ℰ�	Δ��, '� = :2$ ����(

	

�

; − �)

�
�Δ�;, '��;,  0 ≤ � < ' ≤ �, 

to both sides of (15), after some straightforward simplifications, we obtain the 

equivalent Volterra integral equation of the second kind 

4(

�

���

− 1)���5 1�(�, ')<
�(�, �)
− �[

	

�

=���, 0�1��0, '� + +=���(�, 0)1���(0, ')]�07
= Φ(�, '), 

(18)

where 

Φ(�, ') =
1√2$�(

	

�

; − �)

�
��Δ�;, '� − Δ��, '���; − :2$ Δ(�, ')(' − �)


�
�, 

=���, 0� = ℰ��-����, �, 0, ��,=���(�, 0) = ℰ��,�(�, �, 0, ��). 
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Next, by means of elementary transformations we reduce the system (18), (16), 

(17) to 

1�(�, ') = 4�?��	

�

�

���

(�, 0)1�(0, ') + Ψ�(�, '),  � = 1,4, (19)

where 

Ψ�(�, ') = @��(�) AΛ(�, ') + (−1)���
���<
�� Φ(�, ')B ,  � = 1,2,

��(�)ϒ��(�, '),  � = 3,4,

� 
 

?��(�, 0) =

CDE
DF��(�) A−6�(�, 0) + (−1)���

���(�)<
��(�, �)
=�(�, 0)B ,  � = 1,2,

−��(�)8�(�, 0), (� = G or � − 2 = G) and � = 3,4,

0,  otherwise.

� 
 

��(�) =

CDE
DF 
�(�, �)<
��(�, �)��<
�(�, �) + ��<
�(�, �)

,  � = 1,2,


��(�, ���)"��(�)
,  � = 3,4.

� 
Let us estimate the functions Ψ� in (19). For this purpose, we consider the  

integrals 

H���, '� = �(+����, �� , '� − +����, , '�)
��

$���,� �,  � = 1,2, 

I(�, ') = �(

	

�

; − �)

�
��Δ(;, ') − Δ(�, ')��;, 

which are the terms in the expression for Ψ�. Applying the Lagrange formula to the 

integrand +��(�, �� , ') − +��(�, , ') we obtain 

H�(�, ') = �(

��

 − ��)*+��(�, 	, ')*	 |������(���)$�(�,� ),  0 < J < 1. 

Then using the inequality (11) when � = 0 and " = 1, we find that 

|H�(�, ')| ≤ � ∥ � ∥ (' − �)

�
�. 
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To estimate the function I(�, ') we write it in the form 

I��, '� = � (

��	
�

�

; − �)

�
��Δ�;, '� − Δ��, '���; 

+ �(

	

��	
�

; − �)

�
��Δ(;, ') − Δ(�, ')��;. 

(20)

Denote the first term in (20) by I�(�, ') and the second one by I�(�, '). If we apply 

the Lagrange formula to the increments ∆(;, ') − ∆(�, ') in the expression for I� 

and then use the inequality (11) (when � = 1," = 0), we get  

|I�(�, ')| ≤ KK� (

��	
�

�

; − �)

�
� ⋅

*Δ(��, ')*� |������(��)�;KK 
≤ � ∥ � ∥ � (

��	
�

�

; − �)

�
�[' − � − J(; − �)] ≤ � ∥ � ∥ (' − �)


�
�. 

For I�(�, ') we have 

|I�(�, ')| ≤ L' − �
2

M�� ��|Δ(;, ')| + |Δ(�, ')|�	

��	
�

�; ≤ � ∥ � ∥ (' − �)

�
�. 

Estimating all the rest of the terms in formula for Ψ�, we conclude that 

 |Ψ�(�, ')| ≤ �� ∥ � ∥ (' − �)

�

�, (21) 

where �� is some positive constant. 

Proceeding by the same considerations as the ones leading to the estimation 

(21) we can also investigate the kernels ?�� in (19). We obtain the following result: 

the kernels ?����, 0�, 0 ≤ � < 0 < ' ≤ �, can be represented as 

 ?��(�, 0) = N��(�, 0) + N��� (�, 0),  �, G = 1,4, (22) 

where  N��(�, 0) = 
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=

��
��
��
���(�) � [

��
�(�)

	�(�, 
, �, �) − 	�(�, �, �, �)]�(�,�
), , � = 1,2,

��(�) � [

����
� ������

	�	�(�, 
, �, ��	�) − 	�	�(�, ��	�, �, ��	�)]��	�(�,�
),  = � = 3,4,

0, otherwise,

� 

and N��� (�, 0) satisfy the inequality 

 |N��� (�, 0)| ≤ ℎ(O)(0 − �)
��

�

� . (23) 

Here O,  ℎ(O) are any positive number and some constant depending on O,  

respectively; ���(	) = { ∈ ��:  | − 	| < O}. Note also that 

N��� ��, 0� ≡ 0 when � ∈ P3,4Q ∩ P� ≠ G and � − 2 ≠ GQ. 
Thus kernels ?�� have non-integrable singularity, which is caused by N��, and 

therefore we do not know yet whether a solution of (19) exists. We shall see  

presently that it is nevertheless possible to obtain the solution of (19) by the 

method of successive approximations, i.e., 

1�(�, ') = 41�(�)�

���

(�, '),  0 ≤ � < ' ≤ �,  � = 1,4, (24)

where 1�(�)(�, ') = Ψ�(�, '), 

1������, '� = 4�?��	

�

�

���

��, 0�1������0, '��0,  2 = 1,2, … 

Let us estimate the function 1�(�). We can write 

1������, '� = 4�?��	

�

�

���

��, 0�1�����0, '��0 = 4�N��	

�

�

���

��, 0�Ψ��0, '��0 + 

+4�N���	

�

�

���

��, 0�Ψ��0, '��0 = 1R������, '� + 1S������, '� = 

=

CDD
ED
DF4�N��	

�

�

���

(�, 0)Ψ�(0, ')�0 + 4�N���	

�

�

���

(�, 0)Ψ�(0, ')�0,  � = 1,2,

�N��	

�

(�, 0)Ψ�(0, ')�0 + 4 �N���	

��∈{�, ��}

(�, 0)Ψ�(0, ')�0,  � = 3,4.

� 
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From (21) and (23) it follows that 

T1R����(�, ')T ≤ 4��ℎ(O) ∥ � ∥
Γ ��

2
� Γ �1

2
�

Γ �1 + �
2

� (' − �)

��
� ,  � = 1,4. (25)

To show how we estimate 1R�(�) it suffices to consider any of the integrals U N��	
� Ψ��0. Let us take �, G = 1,2 and denote these integrals by H���(�, '). Then 

 

/H���(�, ')/ ≤
�� ∥ � ∥ ��(�)√2$
 K�(

	

�

' − 0)

�
�(0 − �)


�
��0 � AV(��)��
⋅(��) − 1B

��
�(�)

!(�,� )K = 

=
��∥�∥ ����

√�"

WU (
	
� ' − 0)


�

�(0 − �)

�

��0 U !��
���� (�,� )U #

#�

�
� V�	(
��)�

��⋅���� �JW= 

=
�� ∥ � ∥ �����

2
√2$
 K � (

��
�(�)

 − �)!(�,� )�(

�

�

 − �)V�(��)��
⋅(	�) �J� V�(��)��
⋅(	�) ⋅
	�
��

(' − 0)
�
�(0 − �)

�
�

	

�

�0K, 
 

where 
 is the constant in 1). The change of variables X =
	�

��
 in the inner integral 

in the last relation leads to 

/H���/ ≤
��∥�∥ �(�)

�
√�"
(	�)
WU (��

�(�)  − �)!(�,� )U (
�
�  − �)V�	(
��)�

��⋅(���) �J U X�

�
�
� V�	(
��)�

��⋅(���)
⋅$�XW= 

≤ �� ∥ � ∥ (' − �)

�
�
��(�)
 � |

��
�(�)

 − �|!(�,� ). 

It is obvious that the same estimate holds for � = 3,4 (with integral term U |����
� (����)

 − ���|$��(�,� )). 

Introducing the following notations: 

� = max
�∈[�,%]

{��(�):  � = 1,4}, 

Y(O) =
�
 max
�∈[�,%]

{4 � |

��
�(�)

�

���

 − �|!(�, � ),  � |

��
�(��)

 − ��|$�(�,� ),  � = 1,2}, 

we derive the estimate 

 T1R�(�)(�, ')T ≤ ��Y(O) ∥ � ∥ (' − �)

�

�,  � = 1,4. (26) 



Diffusions in one-dimensional bounded domains with reflection, absorption and jumps … 65

Combining (25) and (26), we conclude that 

T1�(�)(�, ')T ≤ �� ∥ � ∥ (' − �)

�
�54ℎ(O)���Γ ��

2
� ⋅ Γ �1

2
�

Γ �1 + �
2

� + Y(O)7, (27)

By means of the method of mathematical induction, we prove that the terms 1�(�) of series (24) satisfy the inequalities 

T1�(�)(�, ')T ≤ � ∥ � ∥ (' − �)

�
�4��&�

&��

⋅ ���&�Y(O)& , 2 = 0,1,2, …	 (28)

where 

�(&) =

A4ℎ(O)���Z ��
2
�B& ⋅ Z �1

2
�

Z �1 + [�
2

� ,  [ = 0,1,2, … ,2. 

Fix O = O� such that Y(O�) < 1. Then in view of (28), we establish that 

4T1�(�)(�, ')T�

���

≤ � ∥ � ∥ (' − �)

�
�4A 4ℎ(O�)

1 − Y(O�)
���Γ ��

2
�B�

Γ �1 + 2�
2

�
�

���

⋅
Γ �1

2
�

1 − Y(O�)
 . 

Hence, the series (24) converges absolutely in 0 ≤ � < ' ≤ �. This implies that 

functions 1� ,  � = 1,4, exist and satisfy the inequality 

 |1�(�, ')| ≤ � ∥ � ∥ (' − �)

�

�,  0 ≤ � < ' ≤ �. (29) 

We have thus constructed a solution +(�, 	, ') of the problem (3-7) which is of 

the form (14). Using the relations (8-11) and the estimate (29) it is easy to verify 

that +(�, 	, ') ∈ ��,�([0, ') × �� ∪ ��) ∩ �([0, '] × �). 

Concerning the uniqueness of the solution of (3-7), note that it follows from the 

maximum principle (see [12, Ch. II]). 

We have proved the following theorem: 

Theorem 1. Let the conditions 1), 2) and a)-c) hold, and let � ∈ �(�). Then the 

problem (3-7) has a unique solution 

+(�, 	, ') ∈ ��,�([0, ') × �� ∪ ��) ∩ �([0, '] × �). 
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If the coefficients of operators ��(�) are extended to [0,�] × ℝ such that properties 

1), 2) hold for all (�, 	) ∈ [0,�] × ℝ and the function � is extended to ℝ such that � ∈ �
(ℝ), then the solution of (3-7) can be represented as 

+��, 	, '� = �,�
ℝ

��, 	, ', ��� �� + �,�	

�

��, 	, 0, ��1��0, '� + 

+�,�	

�

(�, 	, 0, ��)1���(0, ')�0,  0 ≤ � ≤ ' ≤ �,  	 ∈ �� ,  � = 1,2, 

where ,�  is the fundamental solution of  
#

#�
+ ��(�) and the collection �1�����,� is 

the solution of the system of Volterra integral equations of the second kind (19). 

Remark. The assertion of uniqueness also implies that the solution +(�, 	, '),  0 ≤ � ≤ ' ≤ �,  	 ∈ �, of problems (3-7) does not depend on which 

extensions of functions ��(�, 	), 
�(�, 	) and �(	) are chosen.  

3. Diffusion phenomenon on [\',\(]  

We introduce the two-parameter family of linear operators 

 ��	�(	) = +(�, 	, ',�),  0 ≤ � ≤ ' ≤ �,  	 ∈ �,  � ∈ �
(ℝ), (30) 

where +(�, 	, ',�) is the solution of the problem (3)-(7) with function � in (4), and 

proceeds to study its properties in the space �
(ℝ). 

First we note that  

lim
&→�

��	 �&(	) = ��	�(	),  0 ≤ � ≤ ' ≤ �,  	 ∈ �, 

for every sequence of functions �& ∈ �
(ℝ) such that  

sup
&

∥�& ∥< ∞ and  lim
&→�

�& (	) = �(	),  	 ∈ �. 

This property easily follows from Lebesgue bounded convergence theorem. 

We next prove that the operators ��	 ,  0 ≤ � ≤ ' ≤ �, are positivity preserving. 

Lemma. If � ∈ �
(ℝ) and �(	) ≥ 0 for all 	 ∈ �, then ��	�(	) ≥ 0 for all 

0 ≤ � ≤ ' ≤ �,  	 ∈ �. 

Suppose that ��	�(	) takes negative values in [0, '] × � and denote by Y∗ its 

minimum in [0, '] × �. Then, by the minimum principle, value Y∗ is attained at 

some point (��,	�) ∈ (0, ') × {��, �, ��}. In case 	� = � (i.e., ���	�(�) = Y∗ < 0), 

the inequalities 
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�(��)���	�(�) ≤ 0,  � [

��∪��

���	�(�) − ���	�( )]!(�,� ) ≤ 0 

hold. Furthermore, Theorem 14 in [12, p. 69] implies that 

*���	�(�−)*	 < 0, 
*���	�(�+)*	 > 0. 

But since ��(��) + ��(��) > 0, we have ������	�(�) < 0. This contradicts (6). 

Similarly, the case 	� = �� ,  � ∈ {1,2} leads us to the inequality ������	�(��) < 0 

which contradicts (7). A contradiction we arrived at indicates that Y∗ ≥ 0. This 

completes the proof of the lemma. 

By similar considerations to those in proof of Lemma 1, one can easily verify 

that the operators ��	 are contractive, i.e.,  

∥ ��	 ∥≤ 1,  0 ≤ � ≤ ' ≤ �. 

Note also that the operator family ��	 has a semigroup property 

 ��	 = �����	 ,  0 ≤ � ≤ 0 ≤ ' ≤ �, (31) 

This property is a consequence of the assertion of uniqueness of the solution of the 

problem (3-7). Indeed, considering the problem (3-7) in the time interval [�, 0] with 

the function ��	�,  0 ≤ ' ≤ �, taken as the "initial" function, we deduce that ������	��,  0 ≤ � ≤ 0 ≤ ' ≤ �, is the solution of (3-7) with the function � in (4), 

and hence (31) follows. 

These properties allow us to assert (see [13], Ch. II) that ��	 ,  0 ≤ � ≤ ' ≤ �, is 

a Feller semigroup on � for which there exists a unique transition function 9(�, 	, ',⋅) on � such that 

��	�(	) = �9
�

(�, 	, ',� )�( ),  0 ≤ � ≤ ' ≤ �,  	 ∈ �,  � ∈ �
(ℝ). 

Thus, we have proved the following theorem: 

Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter 

semigroup of operators ��	 ,  0 ≤ � ≤ ' ≤ �, defined by formula (30) describes the 

inhomogeneous Feller process on � such that on �� and �� it coincides with the 

diffusion processes generated by ��(�) and ��(�), respectively, and its behavior at 

each of points �, �� ,  � = 1,2, is determined by the corresponding boundary condi-

tion in (2). 
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