QUATERNIONIC REGULAR FUNCTIONS IN THE SENSE OF FUETER AND FUNDAMENTAL 2-FORMS ON A 4-DIMENSIONAL ALMOST KÄHLER MANIFOLD

Wiesław Królikowski

Institute of Mathematics, Czestochowa University of Technology, Czestochowa, Poland wieslaw_krolikowski@wp.pl

Abstract. A correspondence between quaternionic regular functions in the sense of Fueter and fundamental 2-forms on a 4-dimensional almost Kähler manifold is shown.

Keywords: fundamental 2-form, almost Kähler manifold (complex analysis), Fueter regular function (quaternionic analysis).

Introduction

It is interesting that using the properties of quaternionic regular functions in the sense of Fueter one can obtain significant results in complex analysis (see, e.g. [1, 2]). There are many amazing relations between quaternionic functions and some objects of complex analysis. This paper is devoted to showing one of them, namely that there is a correspondence between quaternionic regular functions in the sense of Fueter and fundamental 2-forms on a 4-dimensional almost Kähler manifold.

1. Basic notions

Let M^4 be a real C^{∞} -manifold of dimension 4 endowed with an almost complex structure J (i.e. J is a tensor field which is, at every point x of M^4 , an endomorphism of the tangent space $T_x M^4$ so that $J^2 = -Id$, where Id denotes the identity transformation of $T_x M^4$) and a Riemannian metric g. If the metric g is invariant under the action of the almost complex structure J, i.e.

$$g(JX, JY) = g(X, Y)$$

for any vector fields X and Y on M^4 , then (M^4, J, g) is called an *almost Hermitian* manifold.

Define the fundamental 2-form Ω by

$$\Omega(X,Y) := g(X,JY).$$

W. Królikowski

An almost Hermitian manifold (M^4, J, g, Ω) is said to be *almost Kähler* if Ω is a closed form, i.e.

$$d\Omega = 0.$$

Let us denote by the same letter the matrix Ω with respect to the coordinate basis. The matrix Ω is skew-symmetric so it can look as follows:

$$\Omega = \begin{pmatrix} 0 & \alpha & -\beta & \gamma \\ -\alpha & 0 & \eta & \delta \\ \beta & -\eta & 0 & \rho \\ -\gamma & -\delta & -\rho & 0 \end{pmatrix}.$$

REMARK 1.1. We have

$$det \ \Omega = (\alpha \rho + \beta \delta + \gamma \eta)^2.$$

If Ω is a closed form ($d\Omega = 0$) then, using the following formula (see, e.g. [3], p. 36):

$$d\Omega(X, Y, Z) = \frac{1}{3} \{ X\Omega(Y, Z) + Y\Omega(Z, X) + Z\Omega(X, Y) - \Omega([X, Y], Z) - \Omega([Z, X], Y) - \Omega([Y, Z], X) \},\$$

where [,] denotes the Lie bracket, we obtain that the condition $d\Omega = 0$ is equivalent to the following system of first order partial differential equations:

$$\partial_w \eta + \partial_x \beta + \partial_y \alpha = 0,$$

$$\partial_w \delta - \partial_x \gamma + \partial_z \alpha = 0,$$

$$\partial_w \rho - \partial_y \gamma - \partial_z \beta = 0,$$

$$\partial_x \rho - \partial_y \delta + \partial_z \eta = 0,$$

(1.1)

where (w, x, y, z) denote the coordinates in \mathbb{R}^4 .

2. Preliminaries

Let **H** denote the set of quaternions. **H** is a 4-dimensional division algebra over **R** (real numbers) with basis 1, i, j, k, where 1 is the identity and the quaternionic units i, j, k satisfy the conditions:

$$i^{2} = j^{2} = k^{2} = ijk = -1, \quad ij = k, \ jk = i, \ ki = j.$$

78

(The quaternionic multiplication is not commutative but it is associative.)

A typical element (quaternion) q of **H** can be written as:

$$q = w + ix + jy + kz, \qquad w, x, y, z \in \mathbf{R}.$$

The conjugate of q is defined by

$$\overline{q} := w - ix - jy - kz$$

and the modulus (norm) by

$$||q||^2 := q \cdot \overline{q} = \overline{q} \cdot q = w^2 + x^2 + y^2 + z^2.$$

The norm can be used to express the inverse element: for $q \in \mathbf{H}$, $q \neq 0$ we have

$$q^{-1} = \frac{\overline{q}}{||q||^2}.$$

The following relation is easy to check:

$$\overline{q_1 \cdot q_2} = \overline{q_2} \cdot \overline{q_1}, \qquad q_1, q_2 \in \mathbf{H}.$$

3. Fueter's regular functions

Denote by **H** the skew field of quaternions.

Let $U \subseteq \mathbf{H}$ be an open set. A function $F : \mathbf{H} \supseteq U \rightarrow \mathbf{H}$ of the quaternionic variable q = w + ix + jy + kz, (i, j, k - the quaternionic units) can be written as:

$$F = F_o + iF_1 + jF_2 + kF_3,$$

where F_o, F_1, F_2 and F_3 are real functions of 4 real variables w, x, y, z.

 F_o is called the *real part* of F and $iF_1 + jF_2 + kF_3$ - the *imaginary part* of F. In [4] Fueter introduced the following operator:

$$\overline{\partial}_{left} := \frac{1}{4}(\frac{\partial}{\partial w} + i\frac{\partial}{\partial x} + j\frac{\partial}{\partial y} + k\frac{\partial}{\partial z})$$

DEFINITION 3.1 ([4]). A quaternionic function $F : \mathbf{H} \supseteq U \rightarrow \mathbf{H}$ is said to be *left regular (in the sense of Fueter)* if it is differentiable in the real variable sense and satisfies the condition:

$$\overline{\partial}_{left} \cdot F = 0,$$

where the "." denotes the quaternionic multiplication.

W. Królikowski

The above condition can be rewritten in the following form:

$$(\partial_w + i\partial_x + j\partial_y + k\partial_z) \cdot (F_o + iF_1 + jF_2 + kF_3) = \partial_w F_o - \partial_x F_1 - \partial_y F_2 - \partial_z F_3 + i(\partial_w F_1 + \partial_x F_o + \partial_y F_3 - \partial_z F_2) + j(\partial_w F_2 - \partial_x F_3 + \partial_y F_o + \partial_z F_1) + k(\partial_w F_3 + \partial_x F_2 - \partial_y F_1 + \partial_z F_o) = 0.$$
(3.1)

Note that the last equation is equivalent to the following system of equations:

$$\partial_w F_o - \partial_x F_1 - \partial_y F_2 - \partial_z F_3 = 0,$$

$$\partial_w F_1 + \partial_x F_o + \partial_y F_3 - \partial_z F_2 = 0,$$

$$\partial_w F_2 - \partial_x F_3 + \partial_y F_o + \partial_z F_1 = 0,$$

$$\partial_w F_3 + \partial_x F_2 - \partial_y F_1 + \partial_z F_o = 0.$$
(3.2)

There are many examples of left regular functions. Many papers have been devoted to studying the properties of those functions (see e.g. [2]). One has found the quaternionic generalizations of the Cauchy theorem, the Cauchy integral formula, Taylor series in terms of special polynomials etc.

4. Fundamental 2-forms associated with the Fueter's regular functions

Theorem 4.1.

a) To any quaternionic function F of the form

$$F = Ai + Bj + Ck$$

which is left regular in the sense of Fueter one can associate a skew-symmetric 4×4 -matrix of the form:

$$\Omega_F := \begin{pmatrix} 0 & C & -B & A \\ -C & 0 & A & B \\ B & -A & 0 & C \\ -A & -B & -C & 0 \end{pmatrix}.$$
(4.1)

The 2-form Ω_F is closed: $d\Omega_F = 0$.

b) Conversely, to any skew-symmetric, 4×4 -matrix Ω of the form (4.1) which is a closed 2-form one can associate univocally a quaternionic function:

$$F_{\Omega} := Ai + Bj + Ck,$$

which is left regular in the sense of Fueter.

c) We have

$$\det \Omega_F = (A^2 + B^2 + C^2)^2 = ||F_{\Omega}||^2$$

d) Take two skew-symmetric, 4×4 -matrices of the form (4.1):

$$\Omega_1 = \begin{pmatrix} 0 & C_1 & -B_1 & A_1 \\ -C_1 & 0 & A_1 & B_1 \\ B_1 & -A_1 & 0 & C_1 \\ -A_1 & -B_1 & -C_1 & 0 \end{pmatrix}, \quad \Omega_2 = \begin{pmatrix} 0 & C_2 & -B_2 & A_2 \\ -C_2 & 0 & A_2 & B_2 \\ B_2 & -A_2 & 0 & C_2 \\ -A_2 & -B_2 & -C_2 & 0 \end{pmatrix},$$

then the products $\Omega_1 \cdot \Omega_2$ and $\Omega_2 \cdot \Omega_1$ are of the form (4.1) if and only if the following condition:

$$A_1A_2 + B_1B_2 + C_1C_2 = 0$$

is satisfied.

e) Take two quaternionic functions of the form:

$$F_1 := A_1 i + B_1 j + C_1 k,$$

$$F_2 := A_2 i + B_2 j + C_2 k,$$

then the products $F_1 \cdot F_2$ and $F_2 \cdot F_1$ are of the form:

$$Ai + Bj + Ck$$

if and only if the following condition:

$$A_1A_2 + B_1B_2 + C_1C_2 = 0$$

is satisfied.

f) If

$$\Omega = \begin{pmatrix} 0 & C & -B & A \\ -C & 0 & A & B \\ B & -A & 0 & C \\ -A & -B & -C & 0 \end{pmatrix} \neq 0$$

then

$$\Omega^{-1} = -\frac{1}{A^2 + B^2 + C^2} \cdot \begin{pmatrix} 0 & C & -B & A \\ -C & 0 & A & B \\ B & -A & 0 & C \\ -A & -B & -C & 0 \end{pmatrix}$$
$$= -\frac{1}{A^2 + B^2 + C^2} \cdot \Omega = -\frac{1}{\sqrt{\det \Omega}} \Omega.$$

g) If

$$F = Ai + Bj + Ck \quad (F \neq 0),$$

then

$$F^{-1} = \frac{\overline{F}}{||F||} = \frac{-(Ai + Bj + Ck)}{\sqrt{A^2 + B^2 + C^2}} = -\frac{1}{||F||}F.$$

Proof. This follows immediately from (1.1) and (3.2).

Take any matrix Ω_o of the form (4.1):

$$\Omega_o := \begin{pmatrix} 0 & C_o & -B_o & A_o \\ -C_o & 0 & A_o & B_o \\ B_o & -A_o & 0 & C_o \\ -A_o & -B_o & -C_o & 0 \end{pmatrix}.$$

Denote by $\mathbf{V}(\Omega_o)$ the set of all matrices Ω of the form (4.1) which satisfy the condition:

$$AA_o + BB_o + CC_o = 0,$$

then the algebraic structure $(\mathbf{V}(\Omega_o), +, \cdot)$ is a vector space over **R**.

Analogously, take any quaternionic function F_o of the form:

$$F_o := A_o i + B_o j + C_o k.$$

Denote by $V(F_o)$ the set of all functions F of the form:

$$F := Ai + Bj + Ck,$$

which satisfy the condition:

$$AA_o + BB_o + CC_o = 0,$$

then the algebraic structure $(\mathbf{V}(F_o), +, \cdot)$ is a vector space over **R**.

PROPOSITION 4.1. The mapping

$$\mathbf{F}: \mathbf{V}(F_o) \to \mathbf{V}(\Omega_o),$$

defined by

82

$$\mathbf{F}(Ai + Bj + Ck) := \begin{pmatrix} 0 & C & -B & A \\ -C & 0 & A & B \\ B & -A & 0 & C \\ -A & -B & -C & 0 \end{pmatrix},$$

is an isomorphism between the vector spaces $\mathbf{V}(F_o)$ and $\mathbf{V}(\Omega_o)$.

References

- Blair D.E., Nonexistence of 4-dimensional almost K\u00e4hler manifolds of constant curvature, Proceedings of the American Mathematical Society, 1990, 110, 4, 1033-1038.
- [2] Królikowski W., Some problems of quaternionic analysis, Częstochowa University of Technology, Częstochowa 2012.
- [3] Kobayashi S., Nomizu K., Foundations of Differentaial Geometry, Vols. I II, Interscience, 1963.
- [4] Fueter R., Die Funktionentheorie der Differentialgleichungen $\Delta u = 0$ und $\Delta \Delta u = 0$ mit vier reellen Variablen, Comment. Math. Helv., 1935, 7, 307-330.