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Introduction

It is interesting that using the properties of quaternionic regular functions in the
sense of Fueter one can obtain significant results in complex analysis (see, e.g. [1, 2]).
There are many amazing relations between quaternionic functions and some objects
of complex analysis. This paper is devoted to showing one of them, namely that there
is a correspondence between quaternionic regular functions in the sense of Fueter and
fundamental 2-forms on a 4-dimensional almost Kähler manifold.

1. Basic notions

LetM4 be a real C∞-manifold of dimension 4 endowed with an almost complex
structure J (i.e. J is a tensor field which is, at every point x ofM4, an endomorphism
of the tangent space TxM4 so that J2 = −Id, where Id denotes the identity trans-
formation of TxM4) and a Riemannian metric g. If the metric g is invariant under the
action of the almost complex structure J , i.e.

g(JX, JY ) = g(X,Y )

for any vector fields X and Y onM4, then (M4, J, g) is called an almost Hermitian
manifold.

Define the fundamental 2-form Ω by

Ω(X,Y ) := g(X, JY ).
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An almost Hermitian manifold (M4, J, g,Ω) is said to be almost Kähler if Ω is
a closed form, i.e.

dΩ = 0.

Let us denote by the same letter the matrix Ω with respect to the coordinate basis.
The matrix Ω is skew-symmetric so it can look as follows:

Ω =


0 α −β γ
−α 0 η δ
β −η 0 ρ
−γ −δ −ρ 0

 .

Remark 1.1. We have

det Ω = (αρ+ βδ + γη)2.

If Ω is a closed form (dΩ = 0) then, using the following formula (see, e.g. [3],
p. 36):

dΩ(X,Y, Z)

=
1
3
{XΩ(Y,Z) + Y Ω(Z,X) + ZΩ(X,Y )

− Ω([X,Y ], Z)− Ω([Z,X], Y )− Ω([Y,Z], X)},

where [ , ] denotes the Lie bracket, we obtain that the condition dΩ = 0 is equivalent
to the following system of first order partial differential equations:

∂wη + ∂xβ + ∂yα = 0,

∂wδ − ∂xγ + ∂zα = 0,
∂wρ− ∂yγ − ∂zβ = 0,
∂xρ − ∂yδ + ∂zη = 0,

(1.1)

where (w, x, y, z) denote the coordinates inR4.

2. Preliminaries

Let H denote the set of quaternions. H is a 4-dimensional division algebra over R
(real numbers) with basis 1, i, j, k, where 1 is the identity and the quaternionic units
i, j, k satisfy the conditions:

i2 = j2 = k2 = ijk = −1, ij = k, jk = i, ki = j.
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(The quaternionic multiplication is not commutative but it is associative.)
A typical element (quaternion) q of H can be written as:

q = w + ix+ jy + kz, w, x, y, z∈R.

The conjugate of q is defined by

q := w − ix− jy − kz

and the modulus (norm) by

||q||2 := q·q = q·q = w2 + x2 + y2 + z2.

The norm can be used to express the inverse element: for q∈H, q,0 we have

q−1 =
q

||q||2
.

The following relation is easy to check:

q1·q2 = q2·q1, q1, q2∈H.

3. Fueter’s regular functions

Denote by H the skew field of quaternions.
LetU⊆H be an open set. A function F : H⊇U→H of the quaternionic variable

q = w + ix+ jy + kz, (i, j, k - the quaternionic units) can be written as:

F = Fo + iF1 + jF2 + kF3,

where Fo, F1, F2 and F3 are real functions of 4 real variables w, x, y, z.
Fo is called the real part of F and iF1 + jF2 + kF3 - the imaginary part of F .
In [4] Fueter introduced the following operator:

∂left :=
1
4
(
∂

∂w
+ i
∂

∂x
+ j
∂

∂y
+ k
∂

∂z
).

Definition 3.1 ([4]). A quaternionic function F : H⊇U→H is said to be left
regular (in the sense of Fueter) if it is differentiable in the real variable sense and
satisfies the condition:

∂left·F = 0,

where the "·" denotes the quaternionic multiplication.
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The above condition can be rewritten in the following form:

(∂w + i∂x + j∂y + k∂z)·(Fo + iF1 + jF2 + kF3)
= ∂wFo − ∂xF1 − ∂yF2 − ∂zF3
+ i(∂wF1 + ∂xFo + ∂yF3 − ∂zF2)
+ j(∂wF2 − ∂xF3 + ∂yFo + ∂zF1)
+ k(∂wF3 + ∂xF2 − ∂yF1 + ∂zFo) = 0.

(3.1)

Note that the last equation is equivalent to the following system of equations:

∂wFo − ∂xF1 − ∂yF2 − ∂zF3 = 0,
∂wF1 + ∂xFo + ∂yF3 − ∂zF2 = 0,
∂wF2 − ∂xF3 + ∂yFo + ∂zF1 = 0,
∂wF3 + ∂xF2 − ∂yF1 + ∂zFo = 0.

(3.2)

There are many examples of left regular functions. Many papers have been de-
voted to studying the properties of those functions (see e.g. [2]). One has found the
quaternionic generalizations of the Cauchy theorem, the Cauchy integral formula,
Taylor series in terms of special polynomials etc.

4. Fundamental 2-forms associated with the Fueter’s regular functions

Theorem 4.1.

a) To any quaternionic function F of the form

F = Ai+Bj + Ck,

which is left regular in the sense of Fueter one can associate a skew-symmetric 4×4-
matrix of the form:

ΩF :=


0 C −B A
−C 0 A B
B −A 0 C
−A −B −C 0

 . (4.1)

The 2-form ΩF is closed: dΩF = 0.

b) Conversely, to any skew-symmetric, 4×4-matrix Ω of the form (4.1) which is
a closed 2-form one can associate univocally a quaternionic function:

FΩ := Ai+Bj + Ck,

which is left regular in the sense of Fueter.
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c) We have

det ΩF = (A2 +B2 + C2)2 = ||FΩ||2.

d) Take two skew-symmetric, 4×4-matrices of the form (4.1):

Ω1 =


0 C1 −B1 A1
−C1 0 A1 B1
B1 −A1 0 C1
−A1 −B1 −C1 0

 , Ω2 =

0 C2 −B2 A2
−C2 0 A2 B2
B2 −A2 0 C2
−A2 −B2 −C2 0

 ,
then the products Ω1·Ω2 and Ω2·Ω1 are of the form (4.1) if and only if the following
condition:

A1A2 +B1B2 + C1C2 = 0

is satisfied.

e) Take two quaternionic functions of the form:

F1 := A1i+B1j + C1k,

F2 := A2i+B2j + C2k,

then the products F1·F2 and F2·F1 are of the form:

Ai+Bj + Ck

if and only if the following condition:

A1A2 +B1B2 + C1C2 = 0

is satisfied.

f) If

Ω =


0 C −B A
−C 0 A B
B −A 0 C
−A −B −C 0

 , 0
then

Ω−1 = − 1
A2 +B2 + C2

·


0 C −B A
−C 0 A B
B −A 0 C
−A −B −C 0


= − 1
A2 +B2 + C2

·Ω = − 1√
det Ω

Ω.
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g) If

F = Ai+Bj + Ck (F,0),

then

F−1 =
F

||F ||
=
−(Ai+Bj + Ck)√
A2 +B2 + C2

= − 1
||F ||
F.

P r o o f. This follows immediately from (1.1) and (3.2).

Take any matrix Ωo of the form (4.1):

Ωo :=


0 Co −Bo Ao
−Co 0 Ao Bo
Bo −Ao 0 Co
−Ao −Bo −Co 0

 .
Denote byV(Ωo) the set of all matrices Ω of the form (4.1) which satisfy the condi-
tion:

AAo +BBo + CCo = 0,

then the algebraic structure (V(Ωo),+, ·) is a vector space over R.

Analogously, take any quaternionic function Fo of the form:

Fo := Aoi+Boj + Cok.

Denote byV(Fo) the set of all functions F of the form:

F := Ai+Bj + Ck,

which satisfy the condition:

AAo +BBo + CCo = 0,

then the algebraic structure (V(Fo),+, ·) is a vector space over R.

Proposition 4.1. The mapping

F : V(Fo)→V(Ωo),

defined by
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F(Ai+Bj + Ck) :=


0 C −B A
−C 0 A B
B −A 0 C
−A −B −C 0

 ,
is an isomorphism between the vector spacesV(Fo) andV(Ωo).
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