QUATERNIONIC REGULAR FUNCTIONS IN THE SENSE OF FUETER AND FUNDAMENTAL 2-FORMS ON A 4-DIMENSIONAL ALMOST KÄHLER MANIFOLD

Wiestaw Królikowski
Institute of Mathematics, Czestochowa University of Technology, Czestochowa, Poland wieslaw_krolikowski@wp.pl

Abstract

A correspondence between quaternionic regular functions in the sense of Fueter and fundamental 2-forms on a 4-dimensional almost Kähler manifold is shown.

Keywords: fundamental 2-form, almost Kähler manifold (complex analysis), Fueter regular function (quaternionic analysis).

Introduction

It is interesting that using the properties of quaternionic regular functions in the sense of Fueter one can obtain significant results in complex analysis (see, e.g. [1, 2]). There are many amazing relations between quaternionic functions and some objects of complex analysis. This paper is devoted to showing one of them, namely that there is a correspondence between quaternionic regular functions in the sense of Fueter and fundamental 2-forms on a 4-dimensional almost Kähler manifold.

1. Basic notions

Let M^{4} be a real C^{∞}-manifold of dimension 4 endowed with an almost complex structure J (i.e. J is a tensor field which is, at every point x of M^{4}, an endomorphism of the tangent space $T_{x} M^{4}$ so that $J^{2}=-I d$, where $I d$ denotes the identity transformation of $T_{x} M^{4}$) and a Riemannian metric g. If the metric g is invariant under the action of the almost complex structure J, i.e.

$$
g(J X, J Y)=g(X, Y)
$$

for any vector fields X and Y on M^{4}, then $\left(M^{4}, J, g\right)$ is called an almost Hermitian manifold.

Define the fundamental 2-form Ω by

$$
\Omega(X, Y):=g(X, J Y) .
$$

An almost Hermitian manifold $\left(M^{4}, J, g, \Omega\right)$ is said to be almost Kähler if Ω is a closed form, i.e.

$$
d \Omega=0
$$

Let us denote by the same letter the matrix Ω with respect to the coordinate basis. The matrix Ω is skew-symmetric so it can look as follows:

$$
\Omega=\left(\begin{array}{cccc}
0 & \alpha & -\beta & \gamma \\
-\alpha & 0 & \eta & \delta \\
\beta & -\eta & 0 & \rho \\
-\gamma & -\delta & -\rho & 0
\end{array}\right)
$$

Remark 1.1. We have

$$
\operatorname{det} \Omega=(\alpha \rho+\beta \delta+\gamma \eta)^{2}
$$

If Ω is a closed form $(d \Omega=0)$ then, using the following formula (see, e.g. [3], p. 36):

$$
\begin{aligned}
d \Omega(X, Y, Z) & \\
& =\frac{1}{3}\{X \Omega(Y, Z)+Y \Omega(Z, X)+Z \Omega(X, Y) \\
& -\Omega([X, Y], Z)-\Omega([Z, X], Y)-\Omega([Y, Z], X)\}
\end{aligned}
$$

where [,] denotes the Lie bracket, we obtain that the condition $d \Omega=0$ is equivalent to the following system of first order partial differential equations:

$$
\begin{align*}
\partial_{w} \eta+\partial_{x} \beta+\partial_{y} \alpha & =0 \\
\partial_{w} \delta-\partial_{x} \gamma+\partial_{z} \alpha & =0 \tag{1.1}\\
\partial_{w} \rho-\partial_{y} \gamma-\partial_{z} \beta & =0 \\
\partial_{x} \rho-\partial_{y} \delta+\partial_{z} \eta & =0
\end{align*}
$$

where (w, x, y, z) denote the coordinates in \mathbf{R}^{4}.

2. Preliminaries

Let \mathbf{H} denote the set of quaternions. \mathbf{H} is a 4-dimensional division algebra over \mathbf{R} (real numbers) with basis $1, i, j, k$, where 1 is the identity and the quaternionic units i, j, k satisfy the conditions:

$$
i^{2}=j^{2}=k^{2}=i j k=-1, \quad i j=k, j k=i, k i=j
$$

(The quaternionic multiplication is not commutative but it is associative.)
A typical element (quaternion) q of \mathbf{H} can be written as:

$$
q=w+i x+j y+k z, \quad w, x, y, z \in \mathbf{R}
$$

The conjugate of q is defined by

$$
\bar{q}:=w-i x-j y-k z
$$

and the modulus (norm) by

$$
\|q\|^{2}:=q \cdot \bar{q}=\bar{q} \cdot q=w^{2}+x^{2}+y^{2}+z^{2} .
$$

The norm can be used to express the inverse element: for $q \in \mathbf{H}, q \neq 0$ we have

$$
q^{-1}=\frac{\bar{q}}{\|q\|^{2}}
$$

The following relation is easy to check:

$$
\overline{q_{1} \cdot q_{2}}=\overline{q_{2}} \cdot \overline{q_{1}}, \quad q_{1}, q_{2} \in \mathbf{H}
$$

3. Fueter's regular functions

Denote by \mathbf{H} the skew field of quaternions.
Let $U \subseteq \mathbf{H}$ be an open set. A function $F: \mathbf{H} \supseteq U \rightarrow \mathbf{H}$ of the quaternionic variable $q=w+i x+j y+k z,(i, j, k-$ the quaternionic units) can be written as:

$$
F=F_{o}+i F_{1}+j F_{2}+k F_{3}
$$

where F_{o}, F_{1}, F_{2} and F_{3} are real functions of 4 real variables w, x, y, z.
F_{o} is called the real part of F and $i F_{1}+j F_{2}+k F_{3}$ - the imaginary part of F.
In [4] Fueter introduced the following operator:

$$
\bar{\partial}_{l e f t}:=\frac{1}{4}\left(\frac{\partial}{\partial w}+i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right)
$$

Definition 3.1 ([4]). A quaternionic function $F: \mathbf{H} \supseteq U \rightarrow \mathbf{H}$ is said to be left regular (in the sense of Fueter) if it is differentiable in the real variable sense and satisfies the condition:

$$
\bar{\partial}_{l e f t} \cdot F=0
$$

where the $" \cdot "$ denotes the quaternionic multiplication.

The above condition can be rewritten in the following form:

$$
\begin{align*}
\left(\partial_{w}\right. & \left.+i \partial_{x}+j \partial_{y}+k \partial_{z}\right) \cdot\left(F_{o}+i F_{1}+j F_{2}+k F_{3}\right) \\
& =\partial_{w} F_{o}-\partial_{x} F_{1}-\partial_{y} F_{2}-\partial_{z} F_{3} \\
& +i\left(\partial_{w} F_{1}+\partial_{x} F_{o}+\partial_{y} F_{3}-\partial_{z} F_{2}\right) \tag{3.1}\\
& +j\left(\partial_{w} F_{2}-\partial_{x} F_{3}+\partial_{y} F_{o}+\partial_{z} F_{1}\right) \\
& +k\left(\partial_{w} F_{3}+\partial_{x} F_{2}-\partial_{y} F_{1}+\partial_{z} F_{o}\right)=0 .
\end{align*}
$$

Note that the last equation is equivalent to the following system of equations:

$$
\begin{align*}
& \partial_{w} F_{o}-\partial_{x} F_{1}-\partial_{y} F_{2}-\partial_{z} F_{3}=0, \\
& \partial_{w} F_{1}+\partial_{x} F_{o}+\partial_{y} F_{3}-\partial_{z} F_{2}=0, \tag{3.2}\\
& \partial_{w} F_{2}-\partial_{x} F_{3}+\partial_{y} F_{o}+\partial_{z} F_{1}=0, \\
& \partial_{w} F_{3}+\partial_{x} F_{2}-\partial_{y} F_{1}+\partial_{z} F_{o}=0 .
\end{align*}
$$

There are many examples of left regular functions. Many papers have been devoted to studying the properties of those functions (see e.g. [2]). One has found the quaternionic generalizations of the Cauchy theorem, the Cauchy integral formula, Taylor series in terms of special polynomials etc.

4. Fundamental 2-forms associated with the Fueter's regular functions

Theorem 4.1.

a) To any quaternionic function F of the form

$$
F=A i+B j+C k,
$$

which is left regular in the sense of Fueter one can associate a skew-symmetric 4×4 matrix of the form:

$$
\Omega_{F}:=\left(\begin{array}{cccc}
0 & C & -B & A \tag{4.1}\\
-C & 0 & A & B \\
B & -A & 0 & C \\
-A & -B & -C & 0
\end{array}\right) .
$$

The 2-form Ω_{F} is closed: $d \Omega_{F}=0$.
b) Conversely, to any skew-symmetric, 4×4-matrix Ω of the form (4.1) which is a closed 2 -form one can associate univocally a quaternionic function:

$$
F_{\Omega}:=A i+B j+C k
$$

which is left regular in the sense of Fueter.
c) We have

$$
\operatorname{det} \Omega_{F}=\left(A^{2}+B^{2}+C^{2}\right)^{2}=\left\|F_{\Omega}\right\|^{2}
$$

d) Take two skew-symmetric, 4×4-matrices of the form (4.1):

$$
\Omega_{1}=\left(\begin{array}{cccc}
0 & C_{1} & -B_{1} & A_{1} \\
-C_{1} & 0 & A_{1} & B_{1} \\
B_{1} & -A_{1} & 0 & C_{1} \\
-A_{1} & -B_{1} & -C_{1} & 0
\end{array}\right), \quad \Omega_{2}=\left(\begin{array}{cccc}
0 & C_{2} & -B_{2} & A_{2} \\
-C_{2} & 0 & A_{2} & B_{2} \\
B_{2} & -A_{2} & 0 & C_{2} \\
-A_{2} & -B_{2} & -C_{2} & 0
\end{array}\right),
$$

then the products $\Omega_{1} \cdot \Omega_{2}$ and $\Omega_{2} \cdot \Omega_{1}$ are of the form (4.1) if and only if the following condition:

$$
A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}=0
$$

is satisfied.
e) Take two quaternionic functions of the form:

$$
\begin{aligned}
& F_{1}:=A_{1} i+B_{1} j+C_{1} k, \\
& F_{2}:=A_{2} i+B_{2} j+C_{2} k,
\end{aligned}
$$

then the products $F_{1} \cdot F_{2}$ and $F_{2} \cdot F_{1}$ are of the form:

$$
A i+B j+C k
$$

if and only if the following condition:

$$
A_{1} A_{2}+B_{1} B_{2}+C_{1} C_{2}=0
$$

is satisfied.
f) If

$$
\Omega=\left(\begin{array}{cccc}
0 & C & -B & A \\
-C & 0 & A & B \\
B & -A & 0 & C \\
-A & -B & -C & 0
\end{array}\right) \neq 0
$$

then

$$
\begin{aligned}
\Omega^{-1} & =-\frac{1}{A^{2}+B^{2}+C^{2}} \cdot\left(\begin{array}{cccc}
0 & C & -B & A \\
-C & 0 & A & B \\
B & -A & 0 & C \\
-A & -B & -C & 0
\end{array}\right) \\
& =-\frac{1}{A^{2}+B^{2}+C^{2}} \cdot \Omega=-\frac{1}{\sqrt{\operatorname{det} \Omega}} \Omega .
\end{aligned}
$$

g) If

$$
F=A i+B j+C k \quad(F \neq 0),
$$

then

$$
F^{-1}=\frac{\bar{F}}{\|F\|}=\frac{-(A i+B j+C k)}{\sqrt{A^{2}+B^{2}+C^{2}}}=-\frac{1}{\|F\|} F .
$$

Proof. This follows immediately from (1.1) and (3.2).

Take any matrix Ω_{o} of the form (4.1):

$$
\Omega_{o}:=\left(\begin{array}{cccc}
0 & C_{o} & -B_{o} & A_{o} \\
-C_{o} & 0 & A_{o} & B_{o} \\
B_{o} & -A_{o} & 0 & C_{o} \\
-A_{o} & -B_{o} & -C_{o} & 0
\end{array}\right) .
$$

Denote by $\mathbf{V}\left(\Omega_{o}\right)$ the set of all matrices Ω of the form (4.1) which satisfy the condition:

$$
A A_{o}+B B_{o}+C C_{o}=0,
$$

then the algebraic structure $\left(\mathbf{V}\left(\Omega_{0}\right),+, \cdot\right)$ is a vector space over \mathbf{R}.

Analogously, take any quaternionic function F_{o} of the form:

$$
F_{o}:=A_{o} i+B_{o} j+C_{o} k .
$$

Denote by $\mathbf{V}\left(F_{o}\right)$ the set of all functions F of the form:

$$
F:=A i+B j+C k
$$

which satisfy the condition:

$$
A A_{o}+B B_{o}+C C_{o}=0
$$

then the algebraic structure $\left(\mathbf{V}\left(F_{o}\right),+, \cdot\right)$ is a vector space over \mathbf{R}.

Proposition 4.1. The mapping

$$
\mathbf{F}: \mathbf{V}\left(F_{o}\right) \rightarrow \mathbf{V}\left(\Omega_{o}\right),
$$

defined by

$$
\mathbf{F}(A i+B j+C k):=\left(\begin{array}{cccc}
0 & C & -B & A \\
-C & 0 & A & B \\
B & -A & 0 & C \\
-A & -B & -C & 0
\end{array}\right),
$$

is an isomorphism between the vector spaces $\mathbf{V}\left(F_{o}\right)$ and $\mathbf{V}\left(\Omega_{o}\right)$.

References

[1] Blair D.E., Nonexistence of 4-dimensional almost Kähler manifolds of constant curvature, Proceedings of the American Mathematical Society, 1990, 110, 4, 1033-1038.
[2] Królikowski W., Some problems of quaternionic analysis, Czȩstochowa University of Technology, Częstochowa 2012.
[3] Kobayashi S., Nomizu K., Foundations of Differentaial Geometry, Vols. I - II, Interscience, 1963.
[4] Fueter R., Die Funktionentheorie der Differentialgleichungen $\Delta u=0$ und $\Delta \Delta u=0$ mit vier reellen Variablen, Comment. Math. Helv., 1935, 7, 307-330.

