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Abstract. In this paper a simple and effective method for tracking interfaces in two- 

-dimensional area is described. The presented approach is very attractive in solving Stefan 

problems where moving internal boundaries occur. It is based on the level set method 

(LSM) and uses the so-called distance function. A numerical model based on the finite 

element method (FEM) is proposed. 
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Introduction 

There is a wide-ranging account of the mathematical formulation of problems 

involving moving boundaries as they occur in such areas as hydrology, metallurgy, 

chemical engineering, soil science, molecular biology, materials science, etc. One 

of the most popular numerical techniques for tracking interfaces and shapes is 

LSM. The advantage of LSM is that one can perform numerical computations 

involving curves and surfaces on a fixed grid. Also, LSM makes it very easy to 

follow boundaries when they split, develop holes, etc. Level set method was in-

vented by J.A. Sethian and S. Osher in 1988 [1] and extensively developed for the 

next 20 years [2-7]. 

The quantity that determines the temporary position of the interface is called 

distance function and indicated by φ [m]. It measures current distance from any 

point to the moving interface. Thus the position of the interface is determined by 

φ = 0. There are two kinds of the level set method - global and local LSM. The first 

one requires calculating φ for the entire grid, so it is a time-consuming method. 

The second allows one to calculate φ only in a narrow band at the interface saving 

a lot of time. 

Shape and location of the interface can vary over time due to physical factors 

such as velocity of the solidification front or degree of curvature of the expanding 

or collapsing surface. In each case mathematical descriptions of such phenomena 
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are very similar. In particular, the local LSM is a very useful and popular tool used 

for tracking interfaces due to its speed, efficiency and simplicity. 

1. Mathematical model of the interface tracking 

Tracked interface is a curve in 2D or a surface in 3D space. Let's consider 

a two-dimensional area where distribution of the distance function φ is known 

(Fig. 1). A temporary position of expanding or collapsing interface corresponds to 

φ0 = 0. It is evident that φ is a function of position x [m] and time t [s]. The area 

enclosed inside boundary Γ is marked as Ωin, while the outer area is marked as Ωout. 

 

 

Fig. 1. Moving boundary Γ is described using the distance function φ 

The quantity φ satisfies the following condition derived from the LSM [1]: 
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where x  [m] is a position of a moving interface Γ and n
s
 is the normal vector 

pointing towards Ωout. 

The distance function φ takes the following values 
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A hyperbolic first order differential equation governing the movement of Γ is 

shown below 
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where un [m s
−1

] is the velocity of the interface Γ in the normal direction computed 

according to the following formula 
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Equation (3) describes the so-called initial problem. In the case of such prob-

lems only an initial condition must be defined. The distance function φ i.e. position 

of the interface at t = 0 s must be known. 

2. Numerical scheme 

Starting from the criterion of the method of weighted residuals (3) is multiplied 

by the weighting function w and integrated over the entire region 
outin

Ω∪Ω=Ω : 
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Further the weak form of (3) can be written as a sum of integral terms 
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Ω is subjected to the spatial discretization by dividing it into a set of triangular 

finite elements. They form the mesh that approximates the shape of the area. 

Approximation accuracy increases with the number of elements. Requested values 

of φ are determined at the nodes of elements. 

 

 

Fig. 2. Normalization of the triangular finite element 

Each finite element is subjected to the normalization.  This is done by trans-

forming the coordinates of nodes as shown in Figure 2. Normalization simplifies 

the form of shape functions as well as integrating operations. Linear shape func-

tions in a normalized triangle Nk, k = 1...3, take the following form 

 ηξηξ ==−−=
321

,,1 NNN  (7) 



E. Węgrzyn-Skrzypczak, T. Skrzypczak 114

Figure 3 indicates three areas which may include finite elements. The distance 

function may be calculated in the whole mesh (global LSM) but to determine tem-

porary position of the interface it is enough to use elements that contain it, together 

with its closest neighbors (local LSM). 

 

 

Fig. 3. The narrow band of triangular elements at the interface Γ  

The approximation of a distance φ using linear shape functions for the triangle 

(7) is as follows: 
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In accordance with the standard Galerkin formulation the weighting functions 

are the same as the shape functions. Using the substitution (8) in (6)  the formula 

for a single triangle is 
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The matrix forms of the integral terms of equation (9) are as follows: 

 
( ) ( )

( )
∫
Ω 
















=
e

dV

NN

NN

NN

u

kik

kik

kik

e

n

e

ϕ

ϕ

ϕ

ϕ

,3

,2

,1

B  (10) 

 
( )

( )
∫
Ω 
















=
e

dV

NNNNNN

NNNNNN

NNNNNN

e

332313

322212

312111

ϕM  (11) 



Numerical model with explicit time integration scheme for tracking interfaces 115

As a result of substitutions (10) and (11) in (9) the following expression is 

obtained 
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After the introduction of time grid  
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and the following scheme 
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equation (12) takes the following form 
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After elementary transformations and aggregation a global system of equations 

according to an explicit time integration scheme is obtained 
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This system of equations is built only for selected finite elements containing 

the front or lying in its nearest neighborhood (Fig. 3). This approach helps to speed 

up calculating the position of the front. 

The values of vector 1+f
Φ  require re-initialization [8, 9], to satisfy the follow-

ing condition 

 1=∇ϕ  (17) 

 

Fig. 4. The idea of re-initialization of the interface position 
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The idea of the method of re-initialization is shown in Figure 4. It involves the 

introduction of control points on the section 
( )e
Γ . Then the distance between them 

and the nodes lying in the neighborhood are calculated and the smallest value is 

remembered. The operation is repeated for the whole front. The method is simple 

and fast because of its locality. 
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