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Abstract. We present the result of the theory of quaternionic Fueter regular functions. It is
shown that the module of such function ||F (q)||, q := w+ix+jy+kz, cannot be an analytic
function in r; r2 := ||q||2 := w2 + x2 + y2 + z2.
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Introduction

The presented paper concentrates on a special class of mappings from the quater-
nionic analysis. One of the main problems of the quaternionic analysis is finding an
analog of a holomorphic function from the complex analysis in the quaternionic case.
It is well known that there are many equivalent conditions for holomorphy in com-
plex analysis. It turned out (which was shown by several authors) that the transfer of
such conditions to the quaternions gives in each case different classes of functions
(see e.g. [1]). The best promising attempt was the definition of "quaternionic holo-
morphy", proposed in 1935 by R. Fueter [2], which generalized the Cauchy-Riemann
equations. Henceforth these mappings appeared in the literature as "regular mappings
in the sense of Fueter". They have many properties "analogous" to those of holomor-
phic mappings although the proofs are very difficult from the technical point of view
because, among other things, of the non-commutativity of quaternions. In many cases
the analogy does not exist, for example, there are no "simple" functions which are re-
gular in the sense of Fueter. In 1979 Sudbery [3] collected, classified and proved the
most of fundamental properties of regular mappings. In any event, up to now, there
does not exist a "quaternionic analysis" in the same sense as the complex analysis,
nevertheless in the 1970s Imaeda [4] presented an exceptionally beautiful, simple and
convincing application of quaternions to electromagnetism.

Denote by H the skew field of quaternions. An arbitrary element of H can be
written as q := w + ix + jy + kz, w, x, y, z∈R and the quaternionic units satisfy:
i2 = j2 = k2 = ijk = −1. The conjugation of H given by

q := w − ix− jy − kz
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and the norm ||q|| := (q·q)
1
2 = (q·q)

1
2 can be used to express the inverse element:

for q∈H, q,0

q−1 :=
q

||q||2
.

Recall some fundamental facts.

Definition 1 ([1]). A function f : H→H is called (left) differentiable at q if the
limit

df

dq
(q) := limh→0 h

−1[f(q + h)− f(q)]

exists.

It is the most natural definition at first sight but it leads to a very restricted class
of functions. Namely, we have

Theorem 1 ([1]). If df
dq (q) exists, then f(q) = a+ qb, a, b∈H.

Quaternions do not commute, hence the reasonable generalization of the term
anz

n from the complex case is the form

a0qa1q...anqan+1, ai∈H, i = 1, 2, ..., n+ 1.

But the definition of holomorphicity using sums of such terms leads to a quite
general class of functions, namely to the real-analytic mappings fromR4 toR4.

In 1935 R. Fueter [2] proposed a definition of "regularity" for quaternionic fun-
ctions via an analogue of the Cauchy- Riemann equations.

A function F : H→H of the quaternionic variable q can be written as

F := Fo + iF1 + jF2 + kF3.

Fo is called the real part of F and iF1 + jF2 + kF3 - the imaginary part of F .
In [2] Fueter introduced the following operators:

∂left :=
1
4
(
∂

∂w
+ i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z
),

∂right :=
1
4
(
∂

∂w
+

∂

∂x
i+

∂

∂y
j +

∂

∂z
k),

analogous to ∂
∂z =

1
2(

∂
∂x + i

∂
∂y ) in the complex analysis, to generalize the Cauchy-

-Riemann equations.

Definition 2 ([2]). A quaternionic function F is said to be left regular in the sense
of Fueter (respectively: right regular) if it is differentiable in the real variable sense
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and satisfies the condition:

∂left·F = 0 (resp. ∂right·F = 0). (1)

Note that the condition (1) is equivalent to the following system of equations:

∂wFo − ∂xF1 − ∂yF2 − ∂zF3 = 0,
∂wF1 + ∂xFo + ∂yF3 − ∂zF2 = 0,
∂wF2 − ∂xF3 + ∂yFo + ∂zF1 = 0,
∂wF3 + ∂xF2 − ∂yF1 + ∂zFo = 0.

There are many examples of left (right) regular functions in the sense of Fueter.
Many papers have been devoted to study the properties of those functions (see e.g.
[1, 2, 3, 5]. One has found quaternionic generalizations of the Cauchy theorem, the
Cauchy integral formula, Taylor sequence in terms of special polynomials etc.

The main aim of the paper is to prove the following

Theorem 2 (Main Theorem). The Fueter equation (1) does not admit any nontrivial
solution whose module would be of the form:

||F || := g(r), r2 := w2 + x2 + y2 + z2,

where g(r) is an analytic function in r different from a constant.

To do that we need one important property of the regular mappings in the sense
of Fueter.

1. Important property of the Fueter’s regular functions

This is a result of Sudbery [3] and it can be described as follows.
Let ν be an unordered set of n integers {i1, ..., in} with 1¬ir¬3; ν is determined

by three integers n1, n2 and n3 with n1 + n2 + n3 = n, where n1 is the number of
1’s in ν, n2 - the number of 2’s and n3 - the number of 3’s in ν.

There are 12(n+1)(n+2) such sets ν and we denote the set of all of them by σn.
Let eir and xir denote i, j, k and x, y, z according as ir is 1, 2 and 3, respectively.
Then one defines the following polynomials:

Pν(q) :=
1
n!

∑
(wei1 − xi1)·...·(wein − xin),

where the sum is taken over all n!·n1!·n2!·n3! different orderings of n1 1’s, n2 2’s
and n3 3’s; for n = 0, so ν = ∅, we put P∅(q) := 1.

For example we present the explicit forms of the polynomials Pν of the first and
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second degrees. Thus we have

P1 = wi− x,
P2 = wj − y,
P3 = wk − z,

P11 =
1
2
(x2 − w2)− xwi,

P12 = xy − wyi− wxj,
P13 = xz − wzi− wxk,

P22 =
1
2
(y2 − w2)− ywj,

P23 = yz − wzj − wyk,

P33 =
1
2
(z2 − w2)− zwk.

In [3] Sudbery proved the following

Proposition I.1. Suppose F is a left regular function in a neighbourhood of the
origin 0∈H. Then there is a ball B := B(0, r) with center 0 and radius r in which
F (q) is represented by a uniformly convergent series

F (q) =
∑∞

n=0

∑
ν∈σn

Pν(q)aν , aν∈H.

Let F satisfy the assumptions of the above Proposition I.1. Then,

F (q) = ao +
∑3

i=1
Pi·ai +

∑
i¬j
Pij ·aij +

∑
i¬j¬k

Pijk·aijk + ... (I.1)

and

F (q) = ao +
∑3

i=1
ai·Pi +

∑
i¬j
aij ·Pij +

∑
i¬j¬k

aijk·Pijk + ... (I.2)

We used the following relation (which is easy to verify):

q1·q2 = q2 · q1, q1, q2∈H.

Multiplying the expressions (I.1) and (I.2) we get

||F (q)||2 = ||ao||2 +
∑3

i=1
(Pi·ai·ao + ao·ai·Pi)

+
∑

i¬j
(Pij ·aij ·ao + ao·aij ·Pij) +

∑
i,j
Pi·ai·aj ·Pj

+
∑

i¬j¬k
(Pijk·aijk·ao + ao·aijk·Pijk)

+
∑3

m=1

∑
i¬j
(Pm·am·aij ·Pij + Pij ·aij ·am·Pm) + ...

(I.3)
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2. Proof of Main Theorem

Assume that F is a solution of the Fueter equation (1) and

||F (q)|| = g(r), r2 := w2 + x2 + y2 + z2,

where g(r) is an analytic function different from a constant in some neighbourhood
of r = 0, i.e. we have

g2(r) := bo + b1r + b2r2 + ...+ bnrn + ... . (I.4)

Comparing (I.3) and (I.4) we get

bo = ||ao||2, (I.5)

b1·r =
∑3

i=1
(Pi·ai·ao + ao·ai·Pi), (I.6)

b2·r2 =
∑

i¬j
(Pij ·aij ·ao + ao·aij ·Pij) +

∑
i,j
Pi·ai·aj ·Pj , (I.7)

b3·r3 =
∑

i¬j¬k
(Pijk·aijk·ao + ao·aijk·Pijk)

+
∑3

m=1

∑
i¬j
(Pm·am·aij ·Pij + Pij ·aij ·amPm)

(I.8)

etc.

Thus we obtain

bo  0.

It is easy to verify that the equality (I.6) leads to

a1 = a2 = a3 = 0, b1 = 0.

Hence, (I.7) can be rewritten as

b2·r2 =
∑

i¬j
(Pij ·aij ·ao + ao·aij ·Pij). (I.9)

Consider the equality (I.9). Set

dij := aij ·ao := doij + id1ij + jd2ij + kd3ij
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(i, j, k denote the quaternionic units) and rewrite (I.9) in the form:

b2(w2 + x2 + y2 + z2) = 2·
∑

i¬j
Re (Pij ·dij).

Then we get

b2(w2 + x2 + y2 + z2) = 2Re {[
1
2
(x2 − w2)− xwi]d11}

+ 2Re {[1
2
(y2 − w2)− ywj]d22}

+ 2Re {[1
2
(z2 − w2)− zwk]d33}+ ...

= (x2 − w2)do11 + (y2 − w2)do22 + (z2 − w2)do33.

Comparing the terms in x2, y2 and z2 we obtain:

b2 = do11 = d
o
22 = d

o
33

but then

b2w
2 = −3w2b2.

Thus

b2 = 0

and, as a result of (I.9),

aij = 0.

The equality (I.8) takes the form

b3·r3 =
∑

i¬j¬k
(Pijk·aijk·ao + ao·aijk·Pijk).

This implies that

b3 = 0, aijk = 0.

Now we will prove that b4 = 0.

We have

b4·r4 =
∑
(Pijkl·aijkl·ao + ao·aijkl·Pijkl). (I.10)
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There are 12(4 + 1)(4 + 2) = 15 polynomials Pijkl. We will write all of them:

1. P1111 =
1
24
(wi− x)(wi− x)(wi− x)(wi− x),

2. P2222 =
1
24
(wj − y)(wj − y)(wj − y)(wj − y),

3. P3333 =
1
24
(wk − z)(wk − z)(wk − z)(wk − z),

4. P1112 =
1
24
(wi− x)(wi− x)(wi− x)(wj − y),

5. P1113 =
1
24
(wi− x)(wi− x)(wi− x)(wk − z),

6. P2223 =
1
24
(wj − y)(wj − y)(wj − y)(wk − z),

7. P1222 =
1
24
(wi− x)(wj − y)(wj − y)(wj − y),

8. P1333 =
1
24
(wi− x)(wk − z)(wk − z)(wk − z),

9. P2333 =
1
24
(wj − y)(wk − z)(wk − z)(wk − z),

10. P1122 =
1
24
(wi− x)(wi− x)(wj − y)(wj − y),

11. P1133 =
1
24
(wi− x)(wi− x)(wk − z)(wk − z),

12. P2233 =
1
24
(wj − y)(wj − y)(wk − z)(wk − z),

13. P1123 =
1
24
(wi− x)(wi− x)(wj − y)(wk − z),

14. P1223 =
1
24
(wi− x)(wj − y)(wj − y)(wk − z),

15. P1233 =
1
24
(wi− x)(wj − y)(wk − z)(wk − z).

The equality (I.10) can be rewritten in the form:

b4(w2 + x2 + y2 + z2)2 = 2
∑

Re (Pijkl·dijkl),

where

dijkl := aijkl·ao.

Note that

b4(w2 + x2 + y2 + z2)2 = 2
∑

Re (Pijkl·dijkl)
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=
1
12
[w4 + x4 + ...]do1111 +

1
12
[w4 + y4 + ...]do2222 +

1
12
[w4 + z4 + ...]do3333

+
1
12
[w4 + ...]do1122 +

1
12
[w4 + ...]do1133 +

1
12
[w4 + ...]do2233

=
1
12
w4(do1111 + d

o
2222 + d

o
3333 + d

o
1122 + d

o
1133 + d

o
2233)

+
1
12
x4do1111 +

1
12
y4do2222 +

1
12
z4do3333.

where

doijkl := Re dijkl.

Comparing the terms in x4, y4, z4 and w4 we get

b4x
4 =
1
12
do1111x

4,

b4y
4 =
1
12
do2222y

4,

b4z
4 =
1
12
do3333z

4,

b4w
4 =
1
12
w4(do1111 + d

o
2222 + d

o
3333 + d

o
1122 + d

o
1133 + d

o
2233).

Comparing the terms in x2y2, x2z2 and y2z2 we have

2b4x2y2 =
1
24
x2y2do1122,

2b4x2z2 =
1
24
x2z2do1133,

2b4y2z2 =
1
24
y2z2do2233.

Thus we get

b4 = b4 + b4 + b4 +
1
12
(do1122 + d

o
1133 + d

o
2233)

i.e.

−2b4 =
1
12
(do1122 + d

o
1133 + d

o
2233)

and finally

−2b4 = 3b4,
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but this is impossible. Then

b4 = 0, aijkl = 0.

By the analogous considerations we obtain

b1 = b2 = b3 = b4 = ... = bn = ... = 0.

Thus g(r) has to be constant:

g(r) =
√
bo.

The last condition contradicts to the assumption that g(r) is different from a constant.
This ends the proof.
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