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Abstract. The wavelet transform is one of the most effective tools for many tasks concern-

ing signal and image processing, however it is difficult to obtain all of the necessary prop-

erties in one scalar wavelet. This leads to the development of new types of transforms such 

as a multiwavelet transform, which possesses more than one scaling and wavelet function 

and makes a possibility to combine these functions in order to obtain necessary properties. 

In the present study the CL2, LV and DGHM multiwavelets were used for an identification 

of spatial damage in a composite plate based on the analysis of its modal shapes. The 

obtained results show that some properties of the multiwavelet transform may improve 

the damage identification algorithm and replace the classical wavelet-based methods. 

 

Keywords: multiwavelets, multiwavelet transform, damage identification, composite plate 

Introduction 

The wavelet-based algorithms gain their popularity primarily by their high sen-

sitivity to singularities and non-monotonicities in the analyzed signals. They found 

an application in signal and image de-noising studies [1, 2], pattern recognition [3], 

numerical algorithms for the approximation of functions [4] or solving integral and 

differential equations [5-7], etc. Wavelets also found wide application in the struc-

tural diagnostics (SD) and structural health monitoring (SHM) problems, i.e. in the 

detection, localization and identification of external and internal damages in the 

structural elements used in machinery. The algorithms in the area of structural 

diagnostics presented to-date mainly based on continuous wavelet transform (CWT) 

and have been applied to the beams and plates by using various wavelet functions 

[8-14]. These algorithms are based on the analysis of displacements of modal 

shapes of vibration. The main advantages of these algorithms are the possibility 

of precise localization of damage and the fact that the algorithms do not require 

the model or experimental data of an undamaged structure. 

The results of studies carried out by the author over the last few years [15-17] 

show that the application of the discrete wavelet transform (DWT) is more suitable 

both for 1D and 2D problems due to its best sensitivity and better computational 

efficiency in comparison with CWT and other related transforms used in SD. 
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Moreover, it was proven that the B-spline wavelets provide the best results in SD 

problems in comparison with other compactly supported wavelets both for 1D and 

2D cases. However, the classic DWT-based algorithm produces some unwanted 

artefacts in the resulting patterns, e.g. the boundary effect, which causes an increase 

of detail coefficients on the boundaries of a pattern. The computational methods of 

its reduction [18] help to solve the problem partially, i.e. the diagnostics of boundary 

regions of the investigated structure is still not an easy task. Another problem occurs 

with the identification of spatial damages: the DWT-based algorithm presented 

in [16] identifies only the boundaries of the damage. 

In order to avoid these problems, the discrete multiwavelet transform (DMWT) 

could be used. The main difference of DMWT regarding to DWT is that the first 

one uses vector-valued scaling and wavelet functions, which consist of at least two 

scalar functions. This fact causes that there are more resulting sets of coefficients 

(usually 4), unlike in the case of scalar wavelets, where only two sets (approxima-

tion and detail coefficients) could be obtained. The DMWT creates new possibili-

ties for the signal processing: the multiwavelets could be constructed in such a way 

that their properties will exactly match the necessities of the investigated problem. 

These facts cause that the DMWT and multiwavelets improve existed image 

processing techniques [19], used in the algorithms of gear fault detection [20], in 

development of new numerical algorithms [21], analysis of geomagnetic pulsations 

[22] and many others. 

In this paper the DMWT was used for the spatial damage identification in 

a composite plate. The study was performed based on numerical data of modal 

shapes of vibration of a damaged plate. The vibration data was analysed using three 

multiwavelets: the Chui-Lian multiwavelet with effective support of 2 (CL2), the 

Lebrun-Vetterli multiwavelet and the Donovan-Geronimo-Hardin-Massopust 

(DGHM) multiwavelet. The new DMWT-based damage identification algorithm 

was developed and presented. The obtained results were compared with results of 

DWT-based algorithm proposed in [13] and the advantages of the multiwavelet 

approach were briefly discussed. 

1. Multiwavelets and DMWT 

The multiwavelet theory was introduced by Vasily Strela in his PhD thesis [23]. 

Similarly as in the case of scalar wavelets, the multiwavelets are based on the 

multi-resolution analysis (MRA) with an extension to general dimension N∈r . 

In DMWT the scaling and wavelet functions are replaced by vector-valued ana-

logues: the vector of scaling functions ( ) ( ) ( )[ ]T
r
t,,tx φφ K

1
=Φ  and the vector of 

wavelet functions ( ) ( ) ( )[ ]T
r
t,,tx ψψ K

1
=Ψ , which constitutes Riesz bases in ( )rL R

2 . 

Following the statements of Strela in [23] r could be arbitrary large, however the 

commonly used multiwavelets are primarily with r = 2. Following the definition of 
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MRA of L
2
 the closed functional subspaces Vj could be presented in bi-infinite 

sequential order: 

 KK

21012 −−
⊂⊂⊂⊂ VVVVV  (1) 

with properties of stability and orthogonality (the detailed description of properties 

and conditions of multiwavelet MRA could be found in [24]). All of the functions 

in ( )xΦ  and ( )xΨ  are in 
10
VV ⊂ , where ( ){ }kxspanV

i
−≡ 22

1
φ , Z∈≤≤ k,ri1 . 

The two-scale dilatation and wavelet equations have the form: 

 ( ) ( )∑
−

=

−Φ=Φ

1

0

22

n

k

k kxHx , (2) 

 ( ) ( )∑
−

=

−Ψ=Ψ

1

0

22

n

k

k kxGx , (3) 

where ( ) rr

kk lG,H
×∈ Z

2
 are the rr ×  matrices of filter coefficients of a low-pass 

filter and a high-pass filter, respectively, for each k.  A schematic representation of 

single-level multiwavelet filterbanks was shown in Figure 1. 

 

 

Fig. 1. The scheme of a single-level discrete multiwavelet decomposition 

As mentioned before, the DMWT produces more sets of coefficients than DWT. 

The comparison of 2D subbands of a single-level decomposition for scalar and 

multiwavelets (r = 2) was presented in Figure 2. The symbols ‘H’ and ‘G’ denote 

the application of a low-pass and high-pass pairs of filters respectively. For exam-

ple the symbol ‘HG’ denotes low-pass filtering on the rows and high-pass filtering 

on the columns. The multiwavelets used two channels (see Fig.1), therefore there 

are two sets of approximation and two sets of detail coefficients. The indices in 

Figure 2b are the number of a given function from ( )xΦ  or ( )xΨ . 

In the case of scalar wavelets the number of vanishing moments often coincides 

with the length of effective support (e.g. for Daubechies, B-spline wavelets, etc.), 

which has an influence on their ability of localization of approximation. The multi- 

wavelets could avoid this problem thanks to the combinations of appropriate wave-

lets. In the following study LV, CV2 and DGHM multiwavelets were selected to 

analyze the damaged structure. The mentioned multiwavelets were presented 

graphically in Figure 3. 
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Fig. 2. 2D signal subbands after single-level decomposition using: a) DWT, b) DMWT 

 

Fig. 3. Scaling and wavelet functions of: a), b) LV multiwavelet, c), d) CL2 multiwavelet 

and e), f) DGHM multiwavelet 
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The first considered multiwavelet is the LV one, introduced in [25]. For this 

multiwavelet ( )x
2

φ  is the reflection of ( )x
1
φ  about 1=x  and ( )x

i
ψ  are symmetric/ 

/antisymmetric about 1=x . The Hk and Gk are given by the following matrices: 
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The CL2 multiwavelet was proposed in [26]. It is symmetric/antisymmetric 

about 1=x , the filter coefficients are as follows: 
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The last considered DGHM multiwavelet was introduced in [27]. )(x
1
φ  is sym- 

metric about 21=x  and )(x
2

φ  is symmetric about 1=x . The filter coefficients 

for this multiwavelet are as follows: 
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All of the presented multiwavelets are orthogonal and have a compact support of 

[0, 2]. 

2. Data preparation, algorithm description and analysis 

In the following section the description of the finite element model definition 

was presented. The DMWT-based algorithm was introduced and discussed. Based 

on the numerical data the analysis was performed using three above-mentioned 

multiwavelets. The results were compared for selected types of multiwavelets and 

with the results obtained using DWT-based algorithm. Finally the discussion on the 

obtained results of damage identification was presented. 

2.1. Finite element model and the algorithm 

The finite element model of a composite square plate was prepared in MSC 

Marc/Mentat commercial software. The dimensions of a plate were as follows: 

the length of 0.3 m and the total thickness of 0.015 m. The composite consisted 

of 12 glass-fiber reinforced polymer layers of the same thickness oriented following 

the structural formula: [ ]
S

//
2

60600 − . The material properties were defined as trans-

versal isotropic with the following element values of stiffness matrix: 0148
11

.C =  GPa, 

9819
12

.C =  GPa, 5926
13

.C =  GPa, 4211
33

.C =  GPa, 5333
44

.C =  GPa, =
66

C  

0114.= GPa and the mass density 1794=ρ  kg/m
3
. The clamp boundary condition 

was defined on the boundaries of a plate. The spatial damage was modelled 

in the left bottom quarter of a plate in the form of circular exclusion on the top of 

a plate with the depth of 0.0025 m, which is about 16.7% of the total thickness of 

a plate. The dimensions of the exclusion were as follows: a radius of 0.00285 m 

and the distances of the centre of an exclusion from the origin along both directions 

of 0.075 m. The model was meshed using 8-node hexagonal elements with the 

mesh dimensions of 63×63×6 elements. 

The numerical analysis was performed in order to evaluate the first four modes 

of vibration. For further studies, the nodal displacements of modal shapes in the 

direction of thickness axis of the plate were collected. The analyzed cases consisted 
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of 64×64 equidistant measuring points. The number of considered samples must be 

a power of 2 in order to fulfill the dyadic requirement of DMWT. 

The displacements of modal shapes constitute the input data to the DMWT-based 

algorithm. The proposed algorithm consisted of the following steps: the sets of 

displacements for every considered modal shape were analyzed separately following 

the procedure described in the previous section. Only three sets of detail coefficients 

obtained by low-pass filtering (H1H2, H2H1 and H2H2 - see Fig. 2b) were selected 

for further analysis. As it was noticed, the coefficients magnitudes depend on the 

magnitudes of displacements, therefore it is necessary to consider more than one 

modal shape. In order to emphasize the singularities caused by the damage, the 

absolute values of above-mentioned coefficients were compounded, which constitute 

D-coefficients sets. Such an operation allows to avoid the influence of the damage 

location and its relation with the currently investigated modal shape. 

2.2. Analysis and comparative studies 

The results of the damage identification obtained following the above-presented 

procedure were presented in Figure 4. A single-level multiwavelet decomposition 

was performed following the algorithm presented in section 1. As it could be 

noticed, the resulted sets of D-coefficients consist the high-magnitude coefficients 

in the location of a damage. However, in the first two cases, the magnitudes of dis-

placements were not filtered exhaustively and the magnitudes of D-coefficients sets 

contain, besides high values in the damaged region, also high values in the other 

regions, which may cause difficulties in interpreting of the results (especially in the 

case of CL2 - Fig. 4b). 

 

 

Fig. 4. Results of the damage identification using: a) LV, b) CL2, c) DGHM multiwavelet 

In the case of DGHM multiwavelet the damage was clearly detected and local-

ized and the pattern of D-coefficients does not contain any additional artefacts. 

Such results obtained with use of DGHM multiwavelet could be explained by two 

factors, which influences on the effectiveness of filtering. In spite of other investi- 

gated cases of multiwavelets, the DGHM contain wavelets, that are both symmetric. 

The symmetry of the applied wavelets was studied also in [16] and the same 

conclusions were obtained for 2D B-spline wavelets. Moreover, )(x
1
φ  in the DGHM 
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multiwavelet has shorter effective support. Following the previous analyzes [16] 

the length of the effective support influences on the sharpness of obtained results, 

i.e. the shorter effective support, the sharper results. 

In order to compare obtained results with the results obtained using previously 

developed DWT-based damage identification algorithm the additional study was 

preformed. As it was reported in [16] the most suitable 2D wavelet used for 

a spatial damage identification was a six-order 2D B-spline wavelet. The analysis 

of the same data was performed following this algorithm. The obtained pattern of 

D-coefficients was presented in Figure 5. 
 

 

Fig. 5. Results of the damage identification using DWT-based algorithm with 2D six- 

-order B-spline wavelet 

As it could be observed, the damage in this case was clearly identified, however 

the additional artefacts produced by the decomposition procedure presented in the 

pattern. Moreover, the presence of the boundary effect could be observed (light 

regions near boundaries), while in the case of DMWT-based algorithm with use of 

DGHM multiwavelet this effect was presented, however the changes of magnitudes 

of D-coefficients are small and thus the effect is not observable. 

Conclusions and discussion 

The paper presented the new damage identification algorithm based on DMWT. 

Three types of multiwavelets were used for the analysis and the obtained results 

compared each other and with the results obtained using the previously developed 

DWT-based damage identification algorithm. Following the presented results it 

could be concluded that the DMWT-based algorithm with use of DGHM multi-

wavelet provides the perfect decomposition and filtering, i.e. the modal shapes 

were completely filtered and only the high-valued D-coefficients in the damage 

location are observable. 

The DMWT seems to be a great tool for structural diagnostics and structural 

health monitoring problems. The developed method could also be applied in the 

image processing and pattern recognition studies. The DMWT gives an additional 

unique possibility of almost arbitrary construction of multiwavelets with necessary 
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parameters, i.e. the multiwavelets could be constructed for the best identification 

of damages of a specific type. In the further studies the experimental validation 

of a method will be performed in laboratory conditions considering a fact that the 

influence of measurement noise has a great impact on the sensitivity of the method. 

Acknowledgements 

The research project was financed by the National Science Centre (Poland) granted accord-

ing to the decision No. DEC-2011/03/N/ST8/06205. 

References 

[1] Donoho D.L., Johnstone I.M., Ideal spatial adaptation via wavelet shrinkage, Biometrica 1994, 

81, 425-455. 

[2] Donoho D.L., Johnstone I.M., Adapting to unknown smoothness via wavelet shrinkage, 

J. Amer. Statist. Assoc. 1995, 90, 1200-1224. 

[3] Tang Y.Y., Wavelet Theory Approach to Pattern Recognition, World Scientific Publishing, 

2nd ed., Series in Machine Perception and Artificial Intelligence, 74, Hong Kong 2009. 

[4] Nivergelt Y., Wavelets Made Easy, Springer, Boston 1999. 

[5] Nikolaou M., You Y., Use of wavelets for numerical solution of differential equations, 

[in:] Wavelet Applications in Chemical Engineering, B. Joseph, R. Motard (eds.), Kluwer, 1994, 

209-274. 

[6] Lakestani M., Razzaghi M., Dehghan M., Solution of nonlinear Fredholm-Hammerstein integral 

equations by using semiorthogonal spline wavelets, Math. Probl. Eng. 2005, 1, 113-121. 

[7] Katunin A., Solution of plane Dirichlet problem using compactly supported 2D wavelet scaling 

functions, Sci. Res. Inst. Math. Comp. Sci. 2012, 11, 31-40. 

[8] Douka E., Loutridis S., Trochidis A., Crack identification in beams using wavelet analysis, 

Int. J. Solids Struct. 2003, 40, 3557-3569. 

[9] Chang C.C., Chen L.W., Damage detection of a rectangular plate by spatial wavelet based 

approach, Appl. Acoust. 2004, 65, 819-832. 

[10] Rucka M., Wilde K., Application of continuous wavelet transform in vibration based damage 

detection method for beams and plates, J. Sound Vib. 2006, 297, 536-550. 

[11] Ziopaja K., Pozorski Z., Damage detection and estimation using wavelet transform, Found. Civ. 

Env. Eng. 2006, 7, 413-421. 

[12] Knitter-Piątkowska A., Pozorski Z., Garstecki A., Application of discrete wavelet transfor-

mation in damage detection. Part I: Static and dynamic experiments, Comput. Assist. Mech. 

Eng. Sci. 2006, 13, 21-38. 

[13] Smith C., Akujuobi C.M., Hamory P., Kloesel K., An approach to vibration analysis using 

wavelets in an application of aircraft health monitoring, Mech. Syst. Signal Pr. 2007, 21, 1255- 

-1272. 

[14] Stępiński T., Uhl T., Staszewski T., Advanced Structural Damage Detection: From Theory 

to Engineering Applications, John Wiley & Sons, Chichester 2013. 

[15] Katunin A., Identification of multiple cracks in composite beams using discrete wavelet trans-

form, Sci. Probl. Mach. Oper. Maint. 2010, 45, 41-52. 

[16] Katunin A., Damage identification in composite plates using two-dimensional B-spline wave-

lets, Mech. Syst. Signal Pr. 2011, 25, 3153-3167. 



A. Katunin 78 

[17] Katunin A., Holewik F., Crack identification in composite elements with non-linear geometry 

using spatial wavelet transform, Arch. Civ. Mech. Eng. 2013, 13, 287-296. 

[18] Katunin A., Reduction of boundary effect during structural damage identification using wavelet 

transform, Sel. Eng. Probl. 2012, 3, 97-102. 

[19] Strela V., Heller P.N., Strang G., Topiwala P., Heil C., The application of multiwavelet filter-

banks to image processing, IEEE Trans. Image Proc. 1999, 8, 548-563. 

[20] Yuan J., He Z., Zi Y., Gear fault detection using customized multiwavelet lifting schemes, 

Mech. Syst. Signal Pr. 2010, 24, 1509-1528. 

[21] Li M., Zhu J., A multiwavelet Galerkin boundary element method for the stationary Stokes 

problem in 3D, Eng. Anal. Bound. Elem. 2011, 35, 970-977. 

[22] Zanandrea A., Neto C.R., Rosa R.R., Ramos F.F., Analysis of geomagnetic pulsations using 

multiwavelets spectral and polarization method, Physica A 2000, 283, 175-180. 

[23] Strela V., Multiwavelet Theory and Applications, PhD Thesis, Massachusetts Institute of Tech-

nology, Cambridge, MA 1996. 

[24] Keinert F., Wavelets and Multiwavelets, CRC Press, Boca Ratón 2003. 

[25] Lebrun J., Vetterli M., Balanced multiwavelet theory and design, IEEE Trans. Signal Process. 

1998, 46, 1119-1125. 

[26] Chui C.K., Lian J.-A., A study of orthonormal multi-wavelets, Appl. Numer. Math. 1996, 20, 

273-298. 

[27] Donovan G.C., Geronimo J.S., Hardin D.P., Massopust P.R., Construction of orthogonal wave-

lets using fractal interpolation functions, SIAM J. Math. Anal. 1996, 27, 1158-1192. 


