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Introduction 

Exponential polynomials and generalized Hermite-Bell polynomials were 

defined by the well-known American mathematician (and intellectualist) E.T. Bell 

in paper [1]. 

 From the moment of the appearance of these polynomials, their properties 

inspired many mathematicians to perform investigations. And as the analysis of 

literature shows, the research is still developing. Moreover, the range of applica-

tions of these polynomials is still getting wider - including combinatorics, statistics, 

theory of orthogonal polynomials, as well as quantum mechanics and probability 

and random polynomials [2]. 

The observation of literature also gave us the inspiration for making an attempt 

of collecting and comparing the properties of considered polynomials. We noticed 

many similarities between these polynomials, arising mostly from the nature of 

their generating functions. Differences, usually “slight”, between the polynomials 

exist as well, certainly (for example the problem of binomial type of these polyno-

mials). Moreover, some new relations are received and many original proofs are 

demonstrated in the paper. 

1. Exponential polynomials 

Exponential polynomials ��(�), � ∈ ℕ, also called the single variable Bell 

polynomials, are defined by the formula 
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��(�) =�	
�

�|�|, 
where � ranges over all partitions of �-element set and |�| denotes the number of 

blocks in the partition � (see [3]). It is obvious that 

��(�) = �	�

���

���		��, 

where ���	 denotes the Stirling numbers of the second kind (the Karamata-Knuth 

notation [4, 5] is used here). The above polynomials satisfy the following recurrent 

relation 

����(�) = �	 
�����+
� ������. (1) 

We shall now prove the following theorems on the generating functions for these 

polynomials. Although relation (4) presented below is known, still the way in 

which it was generated here seems to be completely new (see [1, 4, 6]). 

 
Theorem 1. The following relations hold (�,� ∈ ℂ): 

������� ����		��� = �	�

���

���		����	��	��		�� , (2) 

�	��		���		�� = �	∞

���

����(�) 	���!
, (3) 

�		(����) = �	∞

���

��(�) 	���!
. (4) 

Proof (2): Since ���	 ≡ 1, equality (2) for � = 1 holds. Suppose that (2) holds for 

some positive integer �. Because 

��
1
	 ≡ 1									and									 �� + 1� 	 = �	 ���	+ � �� − 1

	 
it can easily be verified that 
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��� ����	��� = �	�

���

���	 ���� 	 � ���	��		��� = 

= �	�

���

���	 ����	(� + ���)	��	��		�� = 

= ��
1
		���		�� +�	�

��

���� 	��	 ���	+ � �� − 1
	�	��	��		�� + 

+ ���		��	�(���)	��		�� = �	���

���

�� + 1� 		����	��	��		�� . 

The application of principal of mathematical induction finishes the proof of 

equality (2). 

 

Proof (3) and (4): From (2) we obtain 

�	��		����		���
���

(���)
= �	�

���

���		�� = ��(�), 

which implies formula (3). 

We note that (3) is equivalent to (4), since we have 

�	� 	�
�

���		�� 	� = �		�� − �	, 

i.e. 

�	��	 	� 	�
�

���		�� 	� = �		(����) − 1. 

□ 

 

Remark 2. The general formula of type (2) can be found in [7]: 

��� �(��) = �	�

���

��
�
	 ���	�(�)(��). 

If we substitute �(�) = �	�	� (� = ��) formula (2) can be deduced. 

 

Remark 3. We note that the function 

�(�): = �	(�����) 
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is the characteristic function of Poisson distribution [8]. By (4), the following 

formulae could be obtained (see also formulae (19) and (20)): 

1

2
	(�(�) + �(−�)) = �	��������	cos(�	sin�) = �	∞

���

(−1)���(�) 	 ��
(2�)!

 (5) 

and 

1

2	� 	(�(�) − �(−�)) = ���������		sin(�	sin�) = �	
∞


��

(−1)
�
��(�) 	 �
��
(2	 + 1)!

, (6) 

which are similar to known Euler’s formulae 

cos� =
1

2
	(��� + ����)					��					sin� =

1

2	� 	(��� − ����). 

Corollary 4. The following formula of convolution type for ��(�) holds: 

��(� + �) = �	�

���

����	��(�)	����(�), (7) 

thus, the Bell polynomials are of the binomial type and the whole machinery of the 

umbral calculus can be applied to ��(�), � ∈ ℕ [9-11]; 

�	�� = �	∞

���


� 	�

���

����	����(�)	����(−�)����!
, (8) 

which implies 

� = �	�

���

����	����(�)	����(−�), 

for every  � ≥ 0. Moreover, we have 

�	 = �	∞

���

(ln2)��!
	��(�) = 1 +�	∞

���


� 	∞

���

���	 (ln2)��!
�	�� . (9) 

Hence, we get 

�! 	� 	�

���

��
�
	 (ln2)��!

≡ 1. 

Our next result also follows from Theorem 1. It is treated as a new kind of 

reduction formulae for the indices of the Bell polynomials. 
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Theorem 5. The following recursion formulae hold 

����(�) = �	� 	�

���

����	��(�), (10)

���(�) = �	� 	�

���

��� + 1				� �+ �	 �����	��(�), (11)

�
��
�� = �	� 	



���

�	 + 2				� �+ �	 �	 + 2	 + 1
� 	��+ 	 + 1					� ��+ �� 		���	��
�� = �

= �	� 	



���

�	 + 2				� �+ �	 	 + 1				� � �	 + 3 − �	 	 + 2	 + 1
��+ �� 		���	��
�� 

(12)

and 

������� = �	� 	�

���


�� + 3				� �+ � ��� + 3� + 1
� ����+ �� + 3� + 2

� �� + 1				� �+ �� 
�+ �� + 3� + 3

� �� + 2				� ��+ � 	
��� + 1				� �+ �2� + 5� �����+ �� 	����������. 
(13)

In other words, for every � ∈ ℕ there exist polynomials  �,�,� ∈ ℕ[�], � = 0,1, … ,�, such that 

����(�) = �	� 	�

���

 �,�,�(�)	��(�), (14)

��,�,�(�) = ���� ���� +⋯+ �� 	���

���

�� +
 − 1						� + � � �� + � − 1								� �� 	� + �� +
 − 1									� �, (15)

where 

 �,���,�(�) =  ���,�,�(�) + ����	 �,�,���(�), 

for � = 0,1, … ,�. 

Proof: By (2) and (3) we obtain 

�	�

���

����(�) 	���!
= �	�� 	� 	�

���

��(�) 	���!
= 
� 	�

���

�	 ���!
�
� 	�

���

��(�) 	���!
� = 

= �	�

���

�	�

���

�	����(�) 	 ���! 	(� − �)!
= �	�

���


�	� 	�

���

����	��(�)�	���!
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which implies (10). Now, from (10) we get 

���(�) = �	� 	���

���

�� + 1				� �	��(�) = �	 
����(�) +�	�

���

�� + 1				� �	��(�)� = 

=
(��) �	� 	�

���

��� + 1				� �+ �	 �����	��(�) 

which gives formula (11). Similarly, the other formulae can be generated. 

□ 
 

Remark 6. The above recursion formulae are an alternative to other known 

formulae of this type: 

– Radoux formula [12]: 

����(�) = � 	���{�,�}

���

���!
	
 ��� ������
 ��� ������ ; 

– Spivey-Gould-Quaintance formulae [13]: 

� 	�

���

!"�#������� = �� 	� 	�

���

����	"� 	�������, 
where !"�# denotes the Stirling numbers of the first kind (see [4, 5]), and 

����(�) =�	�

���

�	�

���

��$ 		����	$���	��	��(�); 

– Cigler formula (and their q-analogue) [14]: 

�	�

���

(−1)��� 	!��#	����(�) = �� 	� 	�

���

%ℎ$ &	���� 	��(�). 

Remark 7. By applying the following differential operator ' = �  

 �
 �-times to ��, 

we obtain 

Θ��� = �	�

���

��	���!
 

and, simultaneously, the formula 

Θ��� = ��	��(�), 
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which implies the generalized Dobinski’s formula (see [15]): 

��(�) = ��� 	� 	�

���

��	���!
. (16)

Harper (1967, [16]) showed that polynomials 	��(�), � ∈ ℕ, have only real simple 

zeros (see also [17] where some weaker result is discussed ). We note that Cakić 

in papers [18, 19] studied some combinatorial properties of the generalizations 

of the above '-differential operator. 

2. Hermite polynomials 

There exist some equivalents to many facts and identities from Section 1 for the 

Hermite polynomials 

(�(�) = (−1)�	��� 	 ��� (����) = � 	!�/"

���

(−1)� 	�!�! 	(� − 2�)!
	(2	�)���. 

We have: 

– equivalent of (1) (see [20]): 

(���(�) = 2	�	(�(�) −
�(�(�); (17)

– Dobinski’s formula for the Hermite polynomials 

(�(�) = (−1)�	��� 	 � 	�

��!�/"

(−1)�	(2� − � + 1)��!
	���� , (18)

since 

��� (����) =
��� 
� 	�

���

(−1)� 	���!
� = � 	�

��!�/"

(−1)� 	(2� − � + 1)��!
	����, 

where (�)� denotes the Pochhammer symbol (i.e. (�)�: = 1, (�)�: = �(� +
+1) … (� + � − 1) for every � = 1,2, …); 

– in view of (17) and Theorem 2 from paper [21] (see also [22, 23]) all the roots 

of polynomials (�(�) are real and, what is more, the roots of polynomial (�(�) 

separate the roots of polynomial (���(�) for each  � ∈ ℕ; 

– it is deduced from the Schur criterion that (�(�) and (���(�)/�, � ∈ ℕ, are 

irreducible polynomials (see [24]); 
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– in view of the following reduction identity (see (7)): 

(�(� + )) + 2��!�/" 	�					�*�/2+�	(2	�)��!�/" = �	�

���

����	(�(�)	(�()), 

the Hermite polynomials are not of binomial type. Moreover, there are analogues 

of (5) and (6): 

��� 	cos(2�	�) = �	�

���

(−1)�	(�(�) 	 ��
(2	�)!

, (19)

��� 	sin(2�	�) = �	�

���

(−1)�	(���(�) 	 ����
(2� + 1)!

. (20)

3. Generalized Hermite-Bell polynomials 

Many properties of the Hermite polynomials can be easily transformed to the 

generalized Hermite-Bell polynomials which are defined by the relation 

(�#(�) = (−1)�	exp(�#) 	 ��� exp(−�#),								� = 0,1,2, …, (21)

for every , = 2,3, … (this relation could be also discussed for all positive reals ,). 
We note that polynomials (�#(�) are a special case of the polynomials  

-�(", �; ,): = exp(−"	�#) 	 ��� exp("	�#), 

introduced by E.T. Bell in [1], since 

(�#(�) = (−1)�	-�(−1,�; ,). 

Moreover, the polynomials (�(�) are our classical Hermite polynomials (�(�) 

discussed in Section 2. Quite important fact is that the polynomials (�#(�) for even 

positive integers , > 2 do not form an orthogonal set with respect to the weight 

function exp(−�#) on the interval (−∞, ∞) [25]. 

Now a collection of the basic properties of polynomials (�#(�) will be listed. 

First one will be the following differential-difference equation (see (17)): 

(���# (�) = ,	�#��	(�#(�) −
� (�#(�). (22)
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Second one, the Dobinski’s formula (see (18)): 

(�#(�) = (−1)�	exp(�#) 	 � 	�

��!�/#"

(−1)��!
	(,	� − � + 1)� (23)

for every positive real number ,. Next, the generating function for (�#(�) (see 

[26]): 

exp(�# − (� − .)#) = �	�

���

(�#(�) 	.��!
. (24)

This relation can be easily used for obtaining many new properties of polynomials (�#(�). For example, let / ∈ ℂ, /# = 1, then 

exp(�# − (� − .)#) = exp((/	�)# − (/	� −/	.)#), 

i.e. 

�	�

���

(�#(�) 	.��!
= �	�

���

(�#(/	�) 	/�	.��!
 

which implies 

(�#(�) = /�	(�#(/	�). (25)

If we take in (24) .: = �(1 + ���/#) = 2����/#cos(�/,), then we get  

exp(�# − (−�)#) = �	�

���

(�#(�) 	(2�cos(�/,))��!
	exp(�	�	�/,), 

i.e. 

�	�

���

(�#��� (2�cos(�/,))��!
	cos�� �,� = 01,																										for	even	,,

exp�2�#�, for	odd	,, � (26)

and 

�	�

���

(�#(�) 	(2�cos(�/,))��!
	sin(�	�/,) = 0. (27)

Hence, for the special values of , we obtain: 

– from (27) for , = 3: 

0 = �	�

���

(−1)� 	�(����� ��� ������3� + 1�! +(���� ��� �����3� + 2�!�, 
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– from (27) for , = 4: 

0 = �	�

��	

(−4)� 	1
2
	�
���


 ��� �
����4� + 1�! +�
���

 ��� �
����4� + 2�! + �
��


 ��� �
���4� + 3�!�, 
– from (26) for , = 4: 

−�	��

(�) = �	�

���

(−4)� 	1
2
	�
���


 ��� �
����4� − 1�! + �
�

 ��� �
��4��! +�
���


 ��� �
����4� + 1�!�. 
Let us also notice that from (24) it results that, similarly as the classical Hermite 

polynomials (�(�), also the polynomials (�#(�), � = 0,1, …, are not of the binomial 

type. 

Indeed, we have 

exp(�# + )# − (� − .)# − () − .)#) = �	�

���

1� 	�

���

����	(�#���(���# �)�2	.��!
 

and 

exp((� + ))# − (� + ) − .)#) = �	�

���

(�#(� + )) 	.��!
 

as well as, what is easy to verify, for every  ,, . ∈ ℝ, , > 0, . ≠ 0, the functions 

(0, ∞) ∋ (�,)) ↦ �# + )# − (� − .)# − () − .)# , 

and 

(0, ∞) ∋ (�,)) ↦ (� + ))# − (� + ) − .)# 

are different. 

 

Considering the zeros of polynomial (�#(�) let us notice that 

 (�#(�) = 1, 

 (�#(�) = ,	�#��, 

 (#(�) = �#�	(,	�# − ,	(, − 1)), 

 (�#(�) = �#��	(,�	�# − 3	,	(, − 1)	�# + ,	(, − 1)	(, − 2)) 

and in general [1, 26]: 
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(�#(�) = �#�$ 	� 	%

���

(−1)� 	��	�(%��)# , 

where � = 3, + 4, 1 ≤ 4 ≤ ,, 3 ≥ 0 and 4 are integers, 5 = � − 3 − 1, �� = ��(�, ,) are all positive integers. Observe that  (#(�) possesses at most two 

real zeros, (�#(�) for , > 2 possesses two or four real zeros, etc. Furthermore, in 

paper [27] the asymptotic approximation for distribution of the extreme positive 

real zeros of  (�#(�) is given. 
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