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Abstract. In this paper the fractional Euler-Lagrange eduaiof ordera [ (0, 1] in the
finite time interval is considered. This equatientiansformed to the integral form by the
use of the fractional integral operators. Next, nbenerical approximation of the analytical
solution is presented. Finally, some examples ofignical solutions are presented.
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Introduction

The fractional Euler-Lagrange equation (FELE) isoaginary fractional differ-
ential equation with composition of the left and tight derivatives involved. This
type of equations is obtained when the minimumoacprinciple and fractional
integration by parts rule are applied [1]. Fracsibdifferential equations are in
general very difficult to solve (see [2, 3] for seraolved examples). Moreover,
FELE presents an asymmetry: left and right fraciaterivatives are involved and
it is an additional drawback for the explicit corggtion of a solution [4, 5]. Each
of these methods leads to a series solution, ysimatiérms of special functions. On
the other hand, computational methods can providetigal approximations of
these analytic solutions. Numerous papers have begoted to the numerical
schemes for FELE (see [6-9]). In comparison to mewvious works [7, 9], in this
paper the solution of FELE deals with the approxiomaof the analytical solution
of FELE based on the numerical evaluation of faawl integrals.

1. Basic definitions

In this section, we recall the definitions of thactional integrals and derivatives.
The left and right Riemann-Liouville fractional égrals are defined as follows
(see [2] for all the definitions used here):
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wherel' () denotes the Gamma function a1 ,. Using (1) and (2) one can
define fractional derivatives. For [ (0, 1] the left Riemann-Liouville (3) and the
right Caputo (4) derivatives are defined as
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2. Statement of the problem

Let us consider the following function8lwith fixeda O (0, 1] and the parame-
ter A\OO defined by [5]

&IE(D; f)z—%fz}dt 5)

Here an unknown functiohis absolutely continuous on the interval B0, Apply-
ing the minimum action principle and fractionalegtation by parts formula [1]
we obtain the following Euler-Lagrange equation

‘DI Dg f(t)-Af(t)=0 (6)
In this paper we consider Eq. (6) with boundaryditions
f(0)=0, f(b)=L (7)
We can write Eq. (6) in the integral form [5]
F(E)=AISIEE () =cpt® (8)

wherec, is a real constant. Next, by using the Babenkgrstelic calculus method
[3] for the composition of the fractional integgderators we have

ft)=(1-M218) gt @)
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Using the binomial expansiorfl¢-x)™ =" X", for|x<1) for the operator

(1—)\Ig+|:, )_1 we can write solution (9) as
ft)=gAm(1812) =co(t“ +Z>\m(|;ﬁ|g)mt“J (10)
m=0 m=1

We have to choose values of parameters andb properly to ensure conver-
gence of the series in (10).
The coefficient, is determined by the boundary conditions (7)

L

gxm(lglg)mbﬂ

¢, = (11)

Then the analytical solution (10) has the form

U(HE

f(t)=L=0 (12)

mzmx"‘(lglg,)mb“

mtu

S—

ForA = 0 Eq. (12) simplifies to the fornfi (t) = Lt® /b*.
The considered problem in this paper is an estonagif (Iglt‘)‘,)mt“ in (12)
form=1,...p0. Form = 1, the analytical form o(léﬁléﬂ)t“ can be expressed by

the formula

aja a _ 21 [0’20’314-]]‘:
(1e12)t —G3{ aaad |b (13)

where Ggg‘ is the Meijer-G function defined as follows [2]

|jb+s r(1-a -s)
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tds  (14)
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From the numerical point of view approximation betMeijer-G function is
very complicated. For this reason we propose tiemenerical method.

3. Numerical solution

In order to approximate the analytical solution)(2®(6), we use the homoge-
nous grid of nodes

0=t, <t <t,<...<t <t,,<...<ty=b, t=iAt, At :% (15)
The value of at nodg; is denoted by =f(t),i =0, ...,N.
It will be convenient to introduce the auxiliarynfttionsg™
g"()=(1212)"t, m= 0. (16)
The following recurrence formula is true
g°(t)=t*, g"(t)=(1512)g™*(t), form>0 (17)

At first we determine numerical schemes for appration of both fractional
operators occurring in Eg. (10). These schemebased on the trapezoidal rule of

integration [9]. The integral (1) vanishes at nagd . f (t)L:t =0), while at nodes
t,i =1,...N, it can be approximated by the formula

; _ 1o f() 1 S f(T)
'o+f(t)‘u F(a)jo(tl o dr‘r(a);jt, (ti__[)l—udr
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The coefficientsy; (including the case= 0) are of the form

0 fori=0and = 0
w = () Jiv - (i-2)° fori>0and = 0 (19)
Yoar(a+d) |(i-j+1) -(i-j-1)° fori>0andEj<i-
1 fori >0 and =i

Using a similar approach, we determine a discrete fof the integral (2). This
operator at nodé has valuel * f (t)‘m =0, while at the nodet, i = 0,...N—-1

we have

T_ti) j=i o (T ti
1 N-1f1.+fj+1j.t,+1 f (1) q
F(O() j=i 2 E (T_t| )H
1 = (j+1)at 1
Cor(a) 4 (fj ' fj+1)IiA‘ (t-iat)™ ar (20)
) @ I
_2r(0(+1),:.(fﬁf“l)((J 1) =0 '))

where the coefficientg ; (including the case= N) look as follows

0 fori=N andj =N

(N=i)*=(N-i-1)

Doar(a+D) |(j-i+2)° -(j-i-12)° fori<N and+ Ej<N-
1 fori <N andj =i

a

fori<N andj =N

(21)

From the computational point of view, we proposeftiilowing algorithm:
Algorithm 1:

Input: o,A,b,L,N e
Output: fy, ..., T
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m:=0

for i:=0toN do
g":=(ib/N)°
f"=g"

repeat
m:=m+1
fori:=0toNdo

N
g™ => g, IV, -seeEq. (21
j=i
fori:==0toN do

g"=> o ™w, //w,; -seeEq.(19
=0

fori:=0toN do
fim : fim +)\mgim
until ()\’".max g" <s)
i=0,...N
fori:=0toN do
f = Lf‘—
fa

Array f " stores the partial sum (for indexes from Qripof the infinite series
occurring in (12). Arrayg®™ is an auxiliary array. In order to reduce the catap
tional memory, one can use only one storage ajfaywerwritten in every calcula-
tion stepm=1, 2, ..., in the main loop. Parametds the threshold to terminate of
iteration in the main loop. The running time of fireposed algorithm i©(Myax N)
where my.y is the value of indexn when the termination of iteration occurred.
The value o, depends on the parametérsa, b, N, €.

4, Reaults

Figure 1 presents plots of function (16) fo~1, m O {1, 2, 5, 10} and
a 0{0.1, 0.2, 0.4, 0.6, 0.8, 1} on the basis of numalicalulations of Section 3
(N = 1024). One can note that if the valuenofncreases then values of function

g"(t) decrease, and for example for= 100: max,,., g"°(t) <9.710" fora = 0.1,
MaX.; 9% (t) <3.1:107 for a = 0.6, andmax,,., g'°(t) <4.910* for a = 1.
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Comparing plots off'(t) with plots of function (13) one can see that bulits are
the same (with the exceptions of the influencewherical errors).

Figures 2 and 3 present the numerical evaluatiofuétion (12) forb = 1,
L = 1, with the parametar O {0.1, 0.2, 0.4, 0.6, 0.8, 1} andl O {0.5, 1} or
A O {-0.5,-1}, respectively. Calculations were performed fommerical parame-
tersN = 1024 and = 10",
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Fig. 1. Numerical approximation of functiog$(t) form {1, 2,5, 10},b=1
and different values af
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Fig. 2. Numerical solution of Eq. (6) for boundagnditionsf(0) = 0,f(1) = 1,
and forA 0{0.5, 1} and different values af
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Fig. 3. Numerical solution of Eq. (6) for boundagnditionsf(0) = 0,f(1) = 1,
and forA 0{-0.5,-1} and different values af

Conclusions

In this paper the numerical algorithm for approxiima of the analytical solu-
tion of the fractional Euler-Lagrange equationiisgented. In comparison with our
previous numerical methods [7, 9], the presentrialym does not require solving
the system of equations. The computational methoelatively fast.
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