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Abstract. In this paper, the results of numerical studies on vibration control of a geometri-

cally nonlinear column with additional mass and spring elements are presented. The exter-

nal load is induced by axially applied force P with constant line of action. The additional 

mass element and the spring are placed on different members of the system. The boundary 

problem has been formulated on the basis of the Hamilton’s principle. Due to the geometri-

cal nonlinearity of the investigated system, the solution of the problem was performed 

by means of the small parameter method. The main purpose of this paper is to investigate 

the influence of the piezoelectric force on the vibration, divergence instability and critical 

loading. 

 

Keywords: vibration, piezoceramic, instability, vibration control 

Introduction 

The piezoceramic elements are widely used in industry and everyday life. They 

are parts of sensors and activators, medical and sport equipment, fuel injectors, 

data storage devices and positioning systems. Due to their mechanical features such 

as Young modulus one can be installed as a part of the mechanical units to control 

vibration or shape of slender systems. 

The studies on vibration and shape control have been performed in recent years. 

Przybylski and Sokół [1] have investigated the possibility of shape control by 

means of piezoceramic element discretely attached to the base structure. The same 

authors have installed the piezoelement as a part of column subjected to the fol-

lower loading [2]. The vibration control of beam systems and bridges was investi-

gated and presented by Song et al. [3]. Irschik's [4] investigations on the methods 

of shape control of the initially deformed system have been presented in the scien-

tific papers. 

The study on vibration and instability of slender systems subjected to different 

types of external loading were performed by many scientists [5-8]. They have 

investigated the influence of the geometrical and physical features on dynamic 

behavior of columns and beams. 
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In this study the problem of control of vibration and loading capacity of the 

geometrically nonlinear column consisted of four rods with divergence instability 

is taken into account. Rods (1) and (2) have a rigid connection while (3) and (4) are 

joined by a pin and rotational spring. The investigated system is loaded by an ex-

ternal force applied at the free end. The boundary problem of has been formulated 

by means of Hamilton’s principle [9] and solved according to small parameter 

method [10]. 

1. Formulation of the problem 

In Figure 1 the investigated nonlinear cantilever column is presented. The first 

and the second rod have a rigid connection. In the point of this connection concen-

trated mass has been placed. Rods three and four have a flexible connection which 

is being simulated by a pin, strengthened by a rotational spring with stiffness C. 

The column is loaded by external force P with constant line of action placed on the 

free end of the system. Rods have a length 
4321

,,, llll . The investigated system can 

be presented as a column composed of two coaxial tubes, tube and rod or can be 

a flat frame. For the more general problem formulation at this stage the piezo-

ceramic rod is not indicated. 

 

 

W1(x1,t), 

W3(x3,t) 

W4(x4,t) 

U4(x4,t) 

Rod (3) 
E3, J3, A3 

 

Rod (4) 

E4, J4, A4 
 

Rod (2) 
E2, J2, A2 
 
 

C 

P  

W2(x2,t) 

Rod (1) 

E1, J1, A2 

 

M 

U2(x2,t) 

U1(x1,t) 

U3(x3,t) 

 

Fig. 1. The nonlinear system under consideration subjected to generalized load 

The problem presented in this paper has been formulated by means of Hamil-

ton’s principle: 
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The kinetic T and potential V energy are expressed as follows: 
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The kinetic (2) and potential (3) energy being introduced into (1) and after 

completing the variational and integration operations, and knowing that virtual: 

longitudinal ( )txU
ii
,δ  and transversal ( )txW

ii
,δ  displacements ( 4,3,2,1=i ) are 

arbitrary and independent for 0 < xi < li the equations were obtained: 
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The axial compressive force is expressed as: 
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The longitudinal displacements are as follows: 
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The investigated system can be described by the set of the geometrical boundary 

conditions in the form: 
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On the basis of (7a-m) and the variational equation, the additional set of natural 

boundary conditions has been obtained: 
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In the boundary conditions the Roman numerals determine the derivatives with 

respect to space variable xi and the dots the derivatives with respect to time t. 

Due to geometrical nonlinearities the small parameter method [10] has been 

used to solve the boundary. For the column vibrating around the rectilinear form of 

static equilibrium the longitudinal and transversal displacements, axial force and 

vibration frequency of rods are being written in a power series according to (9a-d): 
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  (9a-d) 

The solution presented in this paper was obtained on the basis of a system 

of equations with a small parameter in the first power. 
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2. Control of dynamic behaviour by means of piezoceramic element 

Due to general problem formulation, each rod can be treated as made of piezo-

ceramic material. The production of long piezoelements is very complicated and 

expensive, that is why in further investigation rod (3) will be made of piezoceramic 

material (see Fig. 1). Currently produced piezoelements are in the form of stacks 

which are able to induce great loads with relatively small displacements. The con-

stitutive equation of piezoceramic material polarized in the perpendicular direction 

to the axis of the rod (3) are: 
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(Dz [m] - displacement induced by electrical field Ez [V/m], the e31 is a dielectric 

constant [C/m
2
], ξ33 - effective coefficient of dielectric medium [C/Vm]). 

The strain - displacement relation for the rectilinear form of the static equilib-

rium of the column when the electric field is being applied, is as follows: 
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The piezoforce generated by rod (3) can be obtained on the basis of the princi-

ple of total potential energy in the form: 
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the normal stress in rods (1, 2, 4) are formulated on the basis of Hooke's law: 
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After introducing (10a, 10b, 11, 13) into (12) and performing mathematical 
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where 
iii
hbA =  and stands for piezoelectric force (b is a width of the piezo- 

element). 
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On the basis of (14) the four second-order differential equations of longitudinal 

displacements were obtained: 
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The geometrical boundary conditions and natural ones are as follows: 
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The solution of (15) with (16a-g) leads to equations of piezo (residual) forces 

in each segment 
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The force R causes compression or tension which depends on electrical field 

vector and must be introduced into equations of motion: 
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The residual force will have an influence on vibration frequency and critical 

load of the investigated system. 

3. Results of numerical calculations 

Results of numerical calculations on vibration control are presented in the figures 

below. For a more general purpose the results are presented in the non-dimensional 

form (see the nomenclature). 

In the Figures 2 and 3 an influence of the rotational spring stiffness c has been 

presented on the plane external load p vs. vibration frequency ω. For small magni-

tudes of c the vibration frequency and critical loading of the investigated column 

are the lowest. With the increasing stiffness of c parameter the vibration frequency 

and critical loading are rising. If c tends to infinity the critical loading is being 
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stabilized on the level of pcr = 2.4649. The dynamic behaviour of the investigated 

system is highly dependent on the stiffness of connection between rods (3) and (4). 
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Fig. 2. External load vs. vibration frequency 

for different spring stiffness (d2 = 0.5, 

d3 = 0.5, rm = 1, rw = 1, m = f = 0) 

Fig. 3. External load vs. vibration frequency 

for different spring stiffness (d2 = 0.5, 

d3 = 0.7, rm = 1, rw = 1, m = f = 0) 

In Figures 4 and 5 an influence of the concentrated mass m have been presented 

for different spring stiffness and location (c = 1, 10; d3 = 0.5, 0.7). 

The continuous curves refer to the column without mass m. In this configuration 

the highest magnitude of vibration frequency has been obtained. With the increas-

ing magnitude of mass m the reduction of natural vibration frequency can be 

observed irrespective of spring stiffness. It can be concluded that mass m affects 

vibration frequency while the magnitude of critical loading stays unchanged for 

every system configuration. 
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Fig. 4. External load vs. vibration frequency 

for different mass magnitude (d2 = d3 = 0.5, 

rm = 1, rw = 1, c = 1, f = 0) 

Fig. 5. External load vs. vibration frequency 

for different mass magnitude (d2 = d3 = 0.5, 

rm = 1, rw = 1, c = 10, f = 0) 
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After the series of numerical calculations it has been stated that if the spring 

stiffens tends to infinity the critical loading is constant and change in d3 parameter 

has no influence on investigated factor. The reduction of spring stiffness results in 

a decrease in critical loading. The critical loading is stabilizing with the approach 

to the free end by the pin. 
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Fig. 6. External load vs. vibration frequency 

for different magnitude of piezoelectric force 

(d2 = d3 = 0.5, rm = rw = 1, c = 0.5, m = 0) 

Fig. 7. External load vs. vibration frequency 

for different mass magnitude (d2 = 0.5, 

d3 = 0.3, rm = rw = 1, c = 0.5, m = 0.025) 

An influence of the piezoelectric force on the vibration and critical loading has 

been shown in the Figures 6 and 7. The direction of the electric field vector allows 

one to control vibration frequency and critical loading of a system regardless of 

magnitude of m parameter. If the effect of those changes causes compression of 

the first member (rods (1) and (2)) the critical loading and vibration frequency are 

rising. The rotational spring stiffness has a great influence on the area of control. 

If c tends to infinity the applied voltage to the piezoelement regardless to direction 

of the electric field vector causes the reduction of the investigated parameter of 

the column. The boundary magnitude of c can be set. This boundary magnitude 

depends on geometrical features of the system and can not be generalized. 

Conclusions 

In this paper the influence of the piezoelectric force on natural vibration fre-

quency and instability of the geometrically nonlinear column subjected to external 

load with constant line of action has been presented. It can be concluded that: 

• mass m has no influence on vibration modes and critical loading, 

• rotational spring stiffness affects vibration frequency and critical loading, 

• generation of piezoelectric force by means of application of voltage to the 

piezoelement allows one to control vibration frequency and critical loading, 
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• if the piezoforce causes compression of the first member (rod (1) and (2)) an in-

crease of loading capacity as well as vibration frequency have been obtained, 

• piezoelectric force allows one to control an instability of the slender system, 

an area of control depends on geometrical features of the system. 
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Nomenclature 

Ai Cross section area rm Bending stiffness ratio E1J1/E2J2 

Ei Young’s modulus rw Bending stiffness ratio E3J3/E4J4 

Ji Area moment of inertia ki Non-dimensional axial force Sil
2/EiJi 

Jm Mass moment of inertia m Non-dimensional mass M/ρAl 

P External force wi Non-dimensional transversal displacement Wi/l 

C Rotational spring stiffness ui Non-dimensional axial displacement Ui/l 

Ui Axial displacement di Non-dimensional length of a rod li /l 

Wi Transversal displacement ξi, τ Non-dimensional space and time variable, respectively 

M Concentrated mass c Non-dimensional spring stiffness Cl/(E3J3 + E4J4) 

ρi Density of a material ωi
2 Non-dimensional natural frequency Ω2(ρiAil

4/EiJi) 

Ωi Natural vibration frequency p Non-dimensional external load Pl2/(E1J1 + E2J2) 

R Piezoelectric force f Non-dimensional piezoelectric force Rl2/(E1J1 + E2J2) 
 


