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Abstract. In this paper, the results of numerical studies on vibration control of a geometri-
cally nonlinear column with additional mass and spring elements are presented. The exter-
nal load is induced by axially applied force P with constant line of action. The additional
mass element and the spring are placed on different members of the system. The boundary
problem has been formulated on the basis of the Hamilton’s principle. Due to the geometri-
cal nonlinearity of the investigated system, the solution of the problem was performed
by means of the small parameter method. The main purpose of this paper is to investigate
the influence of the piezoelectric force on the vibration, divergence instability and critical
loading.
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Introduction

The piezoceramic elements are widely used in industry and everyday life. They
are parts of sensors and activators, medical and sport equipment, fuel injectors,
data storage devices and positioning systems. Due to their mechanical features such
as Young modulus one can be installed as a part of the mechanical units to control
vibration or shape of slender systems.

The studies on vibration and shape control have been performed in recent years.
Przybylski and Sokot [1] have investigated the possibility of shape control by
means of piezoceramic element discretely attached to the base structure. The same
authors have installed the piezoelement as a part of column subjected to the fol-
lower loading [2]. The vibration control of beam systems and bridges was investi-
gated and presented by Song et al. [3]. Irschik's [4] investigations on the methods
of shape control of the initially deformed system have been presented in the scien-
tific papers.

The study on vibration and instability of slender systems subjected to different
types of external loading were performed by many scientists [5-8]. They have
investigated the influence of the geometrical and physical features on dynamic
behavior of columns and beams.
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In this study the problem of control of vibration and loading capacity of the
geometrically nonlinear column consisted of four rods with divergence instability
is taken into account. Rods (1) and (2) have a rigid connection while (3) and (4) are
joined by a pin and rotational spring. The investigated system is loaded by an ex-
ternal force applied at the free end. The boundary problem of has been formulated
by means of Hamilton’s principle [9] and solved according to small parameter
method [10].

1. Formulation of the problem

In Figure 1 the investigated nonlinear cantilever column is presented. The first
and the second rod have a rigid connection. In the point of this connection concen-
trated mass has been placed. Rods three and four have a flexible connection which
is being simulated by a pin, strengthened by a rotational spring with stiffness C.
The column is loaded by external force P with constant line of action placed on the
free end of the system. Rods have a length /,,1,,/;,],. The investigated system can
be presented as a column composed of two coaxial tubes, tube and rod or can be
a flat frame. For the more general problem formulation at this stage the piezo-
ceramic rod is not indicated.

Rod (2)
E; Jy A;

‘ Ux(x2,1)
ey Uy 1)

Rod (1)
E; Jp, A,

Rod (4)
EyJy Ay

Ui(x1,t)
Us(xs,1)

Wi,
Wi(xs,1)

Fig. 1. The nonlinear system under consideration subjected to generalized load

The problem presented in this paper has been formulated by means of Hamil-
ton’s principle:
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§jz(T—V)dt:0 (1)

h

The kinetic T and potential 7 energy are expressed as follows:
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The kinetic (2) and potential (3) energy being introduced into (1) and after
completing the variational and integration operations, and knowing that virtual:
longitudinal oU, (x,,t) and transversal 5W,(x,,t) displacements (i=1, 2, 3, 4) are
arbitrary and independent for 0 < x; </; the equations were obtained:

4 2 2
;2 W,(f,,t) £ 0|00 LW | W) |, 0 W,(;c,,r)
ox; 6x, ox; 2 ox; ox, ot
i=1,2,34 Q)
The axial compressive force is expressed as:
2
§,(0)=—F,4| 220 OO 1 5y 5 (5)
ox, 2 ox;
The longitudinal displacements are as follows:
X; 2
U (=200 1 W) e =123, (6)
Ed4 2 ox;

The investigated system can be described by the set of the geometrical boundary
conditions in the form:

=0
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On the basis of (7a-m) and the variational equation, the additional set of natural
boundary conditions has been obtained:

E,J, W (xza tlx;#z + E,J W) x4,tX

+ E4J4W4]H x4,tl

E,J, W (x2,z)|xzzl2 + PW, xz,t)| .

x4=l
B o], e e
B (x4,rk4=0 ! x4,t)|x4=0=
~EJ W/ (x4,tlx4=0 + C[Wf (x4,t)|x o W3](x3,tXx3=]3 ]: 0
E g (xl,tlxl:,1 + W (xl,tlxl#l - By L, ( xbdmo_ S.7; (xz’tlxz=0 i

- le(xl, tlxl:ll =0

(8a-))

AN
EJI (xit), L — Ead Wy (1), o+ Jm% =0
E3J3W3H (x3,l‘l vy=ly C[W4I (x4’tl 4=0 W31 (x3’tlx3=l3 ]:
S; S4 Sl S2 P = Sl + S3

In the boundary conditions the Roman numerals determine the derivatives with
respect to space variable x; and the dots the derivatives with respect to time ¢.

Due to geometrical nonlinearities the small parameter method [10] has been
used to solve the boundary. For the column vibrating around the rectilinear form of
static equilibrium the longitudinal and transversal displacements, axial force and
vibration frequency of rods are being written in a power series according to (9a-d):

(é: T :igb” 1 ,2”_1(§,T)+0(82N+1) u’( ,T):ulo(é:)_;,_igznulzn(é:’z.)+0(g2N+l)
n=l

n=1

N
k(z)=k, + Zs“k,zn(r)+ 0"y &l =wy’ +Y "o,y +0E)
n=1 n=l1

(9a-d)

The solution presented in this paper was obtained on the basis of a system
of equations with a small parameter in the first power.
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2. Control of dynamic behaviour by means of piezoceramic element

Due to general problem formulation, each rod can be treated as made of piezo-
ceramic material. The production of long piezoelements is very complicated and
expensive, that is why in further investigation rod (3) will be made of piezoceramic
material (see Fig. 1). Currently produced piezoelements are in the form of stacks
which are able to induce great loads with relatively small displacements. The con-
stitutive equation of piezoceramic material polarized in the perpendicular direction
to the axis of the rod (3) are:

®) ®)
Oy :E3 gx_e31Ez (103.)

®)
D, =ey &+ S3E, (10b)

(D, [m] - displacement induced by electrical field E, [V/m], the es; is a dielectric
constant [C/mz], &3 - effective coefficient of dielectric medium [C/Vm]).

The strain - displacement relation for the rectilinear form of the static equilib-
rium of the column when the electric field is being applied, is as follows:

(@)
gx — dUi(x/)
dx

1

(1)

The piezoforce generated by rod (3) can be obtained on the basis of the princi-
ple of total potential energy in the form:

E’ =%Z [o.2.d0, - [ D.E.d0, (12)
Q

the normal stress in rods (1, 2, 4) are formulated on the basis of Hooke's law:

(DR
o.=Ee, i=124 (13)

After introducing (10a, 10b, 11, 13) into (12) and performing mathematical
operations it leads to:

3 ll 2
88" = 3 B “O 5 ()~ [ U 50, (x| FSU, () =0 (14)
i=1 X

i 0 i

where 4, =b and stands for piezoelectric force (b is a width of the piezo-
element).
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On the basis of (14) the four second-order differential equations of longitudinal
displacements were obtained:
2
dU—’gx’):O, i=1,2,3,4. (15)
dx

1

The geometrical boundary conditions and natural ones are as follows:

U1(0)=U3(0)=0 Ul(ll):UZ(O) U3(13)=U4(0)
EzAzM + E4A4M =0 U2(12)=U4(l4)
X2 ey LI P
E1A1 dUl (xl) _ E2A2 dUZ (x2) — 0 16(a-g)
‘xl _ de _
x=h Xo=lp
E3A3 dU3 (‘x3) + E4A4 dU4(x4) _F= 0
X3 3=k dX4 x4=l
3743 4=l4

The solution of (15) with (16a-g) leads to equations of piezo (residual) forces
in each segment

R| =|R,| =|Rs| =|Rs| =|R| = FE, 4, E ALy (Ey A, Es A E Ay + E\AE; A Ey Ayl + (

17)
The force R causes compression or tension which depends on electrical field
vector and must be introduced into equations of motion:

EJW" (x,0)+(S, £ AW, (x,,0)+ p AW, (x,,0)=0, i=1,2,3,4  (18)

The residual force will have an influence on vibration frequency and critical
load of the investigated system.

3. Results of numerical calculations

Results of numerical calculations on vibration control are presented in the figures
below. For a more general purpose the results are presented in the non-dimensional
form (see the nomenclature).

In the Figures 2 and 3 an influence of the rotational spring stiffness ¢ has been
presented on the plane external load p vs. vibration frequency . For small magni-
tudes of ¢ the vibration frequency and critical loading of the investigated column
are the lowest. With the increasing stiffness of ¢ parameter the vibration frequency
and critical loading are rising. If ¢ tends to infinity the critical loading is being
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stabilized on the level of p. =2.4649. The dynamic behaviour of the investigated
system is highly dependent on the stiffness of connection between rods (3) and (4).

2.5 =

b

Fig. 2. External load vs. vibration frequency
for different spring stiftness (d, = 0.5,
=05 r,=1,rn,=1,m=f=0)

Fig. 3. External load vs. vibration frequency
for different spring stiftness (d, = 0.5,
&=0T7,r,=1,r,=1,m=f=0)

In Figures 4 and 5 an influence of the concentrated mass m have been presented
for different spring stiffness and location (¢ = 1, 10; d5 = 0.5, 0.7).
The continuous curves refer to the column without mass m. In this configuration
the highest magnitude of vibration frequency has been obtained. With the increas-
ing magnitude of mass m the reduction of natural vibration frequency can be
observed irrespective of spring stiffness. It can be concluded that mass m affects
vibration frequency while the magnitude of critical loading stays unchanged for
every system configuration.

2.5 = 25 =
-
m=0 m=0
2= = = == m=0075 2 - == == m=0.075
m=0.15 3\ m=015
9 Y = .+ =m=0225 h A == + am=0225

Fig. 4. External load vs. vibration frequency
for different mass magnitude (d, =d; = 0.5,
rm=Lr,=lc=1[=0)

Fig. 5. External load vs. vibration frequency
for different mass magnitude (d, =d; = 0.5,
rm=1Lr,=1,¢c=10,/=0)
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After the series of numerical calculations it has been stated that if the spring
stiffens tends to infinity the critical loading is constant and change in d; parameter
has no influence on investigated factor. The reduction of spring stiffness results in
a decrease in critical loading. The critical loading is stabilizing with the approach
to the free end by the pin.

20=

4 0 1 2 3 4
w
Fig. 6. External load vs. vibration frequency Fig. 7. External load vs. vibration frequency
for different magnitude of piezoelectric force for different mass magnitude (d, = 0.5,
(dy=d;=05,r,=r,=1,¢=0.5,m=0) d3=03,r,=r,=1,¢=0.5,m=0.025)

An influence of the piezoelectric force on the vibration and critical loading has
been shown in the Figures 6 and 7. The direction of the electric field vector allows
one to control vibration frequency and critical loading of a system regardless of
magnitude of m parameter. If the effect of those changes causes compression of
the first member (rods (1) and (2)) the critical loading and vibration frequency are
rising. The rotational spring stiffness has a great influence on the area of control.
If ¢ tends to infinity the applied voltage to the piezoelement regardless to direction
of the electric field vector causes the reduction of the investigated parameter of
the column. The boundary magnitude of ¢ can be set. This boundary magnitude
depends on geometrical features of the system and can not be generalized.

Conclusions

In this paper the influence of the piezoelectric force on natural vibration fre-
quency and instability of the geometrically nonlinear column subjected to external
load with constant line of action has been presented. It can be concluded that:
¢ mass m has no influence on vibration modes and critical loading,
¢ rotational spring stiffness affects vibration frequency and critical loading,

e generation of piezoelectric force by means of application of voltage to the
piezoelement allows one to control vibration frequency and critical loading,
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o if the piezoforce causes compression of the first member (rod (1) and (2)) an in-
crease of loading capacity as well as vibration frequency have been obtained,

e piezoelectric force allows one to control an instability of the slender system,
an area of control depends on geometrical features of the system.
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Nomenclature
A; | Cross section area rn | Bending stiffness ratio £,J/ExJ,
E; | Young’s modulus r, | Bending stiffness ratio £3J3/E4J,
J; | Area moment of inertia k; | Non-dimensional axial force S,/%/EJ;
Jn | Mass moment of inertia m | Non-dimensional mass M/pA/
P | External force w; | Non-dimensional transversal displacement /]
C |Rotational spring stiffness u; | Non-dimensional axial displacement U/
U; | Axial displacement d; | Non-dimensional length of a rod /;//
W, | Transversal displacement ¢ t | Non-dimensional space and time variable, respectively
M | Concentrated mass ¢ | Non-dimensional spring stifthess Cl/(E3J; + EyJ,)
pi | Density of a material w? | Non-dimensional natural frequency Q*(p;4,l*/EJ;)
), |Natural vibration frequency p | Non-dimensional external load PPIEJ,+ EyJ,)
R | Piezoelectric force /| Non-dimensional piezoelectric force RP/(E\J, + ExJy)




