
Journal of Applied Mathematics and Computational Mechanics 2014, 13(1), 87-94 

NUMERICAL MODELING OF THERMAL PROCESSES 

IN THE LIVING TISSUE DOMAIN SECURED WITH A LAYER 

OF PROTECTIVE CLOTHING 

Bohdan Mochnacki 

1 
, Ewa Majchrzak 

2
, Mateusz Duda 

1
 

 1 Higher School of Labour Safety Management in Katowice, Katowice, Poland 
2 Silesian University of Technology, Gliwice, Poland 

 1 bmochnacki@wszop.edu.pl 

Abstract. In the paper the problem of thermal processes proceeding in the domain of bio-

logical tissue secured with protective clothing is discussed. In particular, the mathematical 

model of heat exchange corresponding to conditions of high temperature in the system 

environment - layer of protective clothing - air gap - skin tissue is formulated in the form of 

a certain boundary - initial problem. Next, the numerical algorithm based on the boundary 

element method is presented. In the final part of the paper the examples of numerical 

simulations are shown. 
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Introduction 

The clothing protecting one against the action of high (or low) temperature is 

often used in the various fields of human activity. For some works it is even neces-

sary. At this point one can mention the professions of firefighter, ironmaster, 

caster, welder etc. In the industry practice a number of standards for the insulating 

efficiency of protective clothing is applied (for example the delay time to reach the 

high temperature to the skin surface). Tests for determining such standards con-

cerning the different types of clothing are quite expensive and it seems that the 

methods of numerical simulation can be an effective tool to avoid the significant 

expenses. In this paper the 1D problem is considered (because of the geometry 

of domain considered this simplification is here acceptable) and the transient 

temperature field in the skin tissue sub-domain T(x, t) is determined. On the 

external surface of fabric the Robin condition is assumed, while the air gap 

between the clothing and skin surface is taken into account by introducing the 

additional thermal resistance into a mathematical model. At the stage of numerical 

algorithm construction the I scheme of the boundary element method (BEM) 

is used. The examples of numerical computations are also presented. 
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1. Governing equations 

We consider the non-homogeneous domain being the composition of the skin 

tissue, the layer of protective clothing and the air layer between skin and fabric, 

while we assume that the material from which the clothing is made can be treated 

as the homogeneous one. 

The temperature field in the tissue sub-domain is described by the following 

energy equation [1, 2] (the 1D problem is considered and taking into account 

the real geometrical conditions such simplification is quite acceptable) 
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where C is the mean volumetric specific heat of the skin tissue, λ is the mean ther-

mal conductivity, GB is the perfusion coefficient, CB is the volumetric specific heat 

of blood, Qmet is the metabolic heat source. It should be pointed out that the second 

component on the right-hand side of equation (1) corresponds to the so-called 

perfusion heat source and it is connected with the presence of the big number of 

capillaries in the domain of soft tissue. 

The temperature distribution in the fabric sub-domain results from the well- 

-known Fourier equation 
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where C
F
 is the volumetric specific heat of the fabric, 

F
λ  is the thermal conductivity. 

On the external surface of the fabric the Robin condition can be assumed 
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where α
s
 is the substitute heat transfer coefficient, while T

a
 is the ambient tem- 

perature. For x = L0 the thermal resistance of the air gap is defined as the inverse 

of the heat transfer coefficient α
gap

 (see: Section 3), this means R = 1/α
gap

 and the 

boundary condition at this point has a form 

 
0

( , ) ( , )
: ( , ) ( , )F

F

T x t T x t
x L q x t q x t

R

−

= = =  (4) 

or 

  
( )

0

, ( , )
:

( , ) ( , ) ( , )

F

F

q x t q x t
x L

T x t T x t Rq x t

 =
= 

= −
 (5) 



Numerical modeling of thermal processes in the living tissue domain secured with a layer … 89

At the point corresponding to the right edge of domain one has 

 : ( , )
in

x L T x t T= =  (6) 

where 
in
T  is the temperature of body interior. 

The mathematical model should be supplemented by the initial conditions. 

In domain of fabric and tissue the initial temperatures are given, in particular 
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The initial condition for the tissue is the following 
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and the function 
0
( )T x is assumed in the form of quadratic function [3].  

2. Boundary element method 

In the first place the BEM algorithm for the skin tissue sub-domain will be 

presented. So, the equation (1) can be written in the form 
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where Q(x, t) = GB CB [TB – T (x,t)] + Qmet is the source term. 

Let us introduce the time grid with the constant step 1f f
t t t

−

∆ = − . Using the first 

scheme of the BEM for the transition 1f f
t t
−

→ , f = 1, 2, ..., F, one obtains 

the following boundary integral equation [4, 5] 
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where ( )0
ξ ,L L∈  is the observation point, ( )* ξ, , ,fT x t t  is the fundamental solu- 

tion, ( ) ( )* *ξ, , , λ ξ, , , /f f
q x t t T x t t x= − ∂ ∂  and ( ) ( ), λ , /

f f
q x t T x t x= − ∂ ∂ . 
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For the task considered the fundamental solution has the form 
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where a = λ /C is the heat diffusion coefficient. 

The heat flux ( )* ξ, , ,fq x t t  resulting from the fundamental solution can be calcu- 

lated analytically [4] 
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Using the constant elements (with respect to time) one obtains  
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where 
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Additionally, we denote 
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For ξ L
−

→  and 
0
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→  one obtains the equations 
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or 
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The system (17) allows one to find the ‘missing’ boundary values ( ),

f
T x t  

or ( ),

f
q x t  for 

0
x L=  and x = L. 

The last stage of the BEM algorithm relies on the computations of ( ),

f
T x t  

at the optional set of internal points ( )0
ξ ,L L∈  using the equation [4] 
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The boundary integral equation describing the temperature field in the fabric 

sub-domain is simpler (because the source term is equal to zero). So 
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Proceeding as before one obtains the system of equations 
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Now the boundary conditions should be introduced. The condition on the contact 

surface between fabric and skin tissue constitutes the element coupling the 

equations (17) and (20). Thus 
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After the dissolution of the system (21) one can determine the temperature 

0
( , )

f
T L t using the formula 
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The heat flux (0, )
f

Fq t can be also found 

 
0
(0, ) α (0, )

f f
F s F aq t T t T = −   (23) 

The last stage of the algorithm proposed relies on the computations of internal 

temperatures separately for the fabric and tissue. 

3. Example of computations 

 At first the problem of heat transfer coefficients appearing in the conditions (3) 

and (4) will be explained. The boundary heat flux is a sum of two components, 

namely 

 ( ) [ ]0 : 0, α (0, )
c c F a

x q t T t T= = −  (24) 

where (0, )
c
q t is the convective component (α

c
is the heat transfer coefficient, Ta is 

the ambient temperature). The second component of the boundary heat flux results 

from the radiation phenomenon 

 ( ) ( )4 4 4 40 : 0, σ ε (0, ) σε φ 1 ε (0, )r g F g F F a g F ax q t T t T T t T
−

   = = − − − −     (25) 

where σ is the Stefan-Boltzmann constant, ε , εg F denote the emissivity of the 

hot gases surrounding the fabric and the emissivity of the fabric, ,

g a
T T are 

the temperatures of the hot gases and air, φF g− is the view factor. In literature [6] 

one can find the simplified formula determining the boundary heat flux 

 ( ) ( ) [ ]0
0 : (0, ) 0, 0, α (0, )

F c r s F a
x q t q t q t T t T= = + = −  (26) 

where α
s
 is the substitute heat transfer coefficient which can be found experimen- 

tally [6]. 

Between the fabric and skin surface is the ‘trapped’ air layer. The boundary 

condition at this region can be assumed in the form of the heat flux continuity con-

dition. The thermal resistance of air gap resistance appearing in the condition (4) 

is equal to 1/α
gap

. At the stage of numerical computations it is assumed that 



Numerical modeling of thermal processes in the living tissue domain secured with a layer … 93

the thermal resistance is a constant value 
2

0.077m K/WR =  (the authors have 

developed the procedure of the exact computation of temperature-dependent 

thermal resistance R, but the assumption of the constant value proposed is quite 

acceptable) In this paper the remaining input data are the following: thickness of 

tissue domain 0.012 m, thickness of fabric 0.00677 m, volumetric specific heat 

of tissue 
33MJ/(m K)C = , thermal conductivity of tissue λ 0.3W/(mK)=  volu- 

metric specific heat of fabric 
30.24 MJ/(m K)

F
C =  thermal conductivity of fabric 

λ 0.17 W/(mK)
F
= , volumetric specific heat of blood 

34MJ/(m K)
B

C = , perfusion 

coefficient 0.0005 1/s
B
G = , the metabolic heat source 

3
245W/m

met
Q = , the tissue 

temperature for x = L: 37 C
in
T = ° , the heat transfer coefficient on the external 

surface of the fabric 2
100 W/(m K)

s
α = . In Figure 1 the example of the results 

obtained is presented. In particular the heating curves at the points corresponding 

to the skin surface and the internal surface of fabric (for the ambient temperature 

80 C
a
T = ° ) are shown. 

 

 

Fig. 1. Heating curves: 1 - skin, 2 - fabric 

4. Final remarks 

The algorithm presented can be used for numerical modeling of thermal proc-

esses proceeding in the domain of skin tissue protected by clothing. The different 

conditions can be considered and it is also possible to take into account the hetero-

geneity of both the fabric (the layers) and the skin tissue. The essential problem 

which requires the additional research is connected with the proper choice of 

the heat transfer coefficient on the external surface of the clothing. 
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