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Abstract. In this paper we present an application of the system of two homogeneous linear 

recurrence equations to evaluate the determinant of pentadiagonal matrix. The general con-

siderations are illustrated by two examples. It is shown that the proposed approach is suited 

for implementation using computer algebra systems. 
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Introduction 

The subject of consideration is a pentadiagonal matrix of the form  
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It means that 
nnijn

aA
x
][= where 0=

ij
a  for 2>− ji . This type of matrices arises 

for example in a numerical solution of differential equations by using the finite  

element or finite difference methods. The aim of this paper is to derive a recurrence 

relation for determinant of matrix under considerations. The numerical algorithms 

for computing the determinant of pentadiagonal matrices were formulated in many 
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papers, e.g. [1, 2]. Most of these algorithms were obtained under certain assump-

tions. For example in [2] it was obtained that ∏
=

=

n

i

in
xA

1

)det(  if 0≠
k
x , 

1,...,2,1 −= nk  where 
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In the present paper we are to show that determinant of pentadiagonal matrix of the 

form (1) is a particular solution of a system of two linear recurrence equations. This 

approach is available for every pentadiagonal matrix. 

1. The main results 

In order to derive recurrence relation for determinant of matrix (1) we introduce 

two auxiliary pentadiagonal matrices of the form 
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and 
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Let us denote  

 
nn

AW det= , 
nn

AW
~

det
~
= , 

nn
AW det= .  

Using the method of Laplace expansion with respect to the last row of matrix 
n

A  

we obtain  

 
111

~

−−−

+−=
nnnnnnn

WeWdWaW  (2) 

Now, we are to derive recurrence relation for determinant 
1

~

−n
W . To this end we use 

Laplace expansion with respect to last column of matrix 
1

~

−n
A , which leads to the 

linear combination of two determinants. First of these determinants is equal to 

2−n
W  and for second determinant we apply Laplace expansion with respect to the 

last row and we obtain a linear combination of determinants 
3−n
W  and 

3

~

−n
W . Hence 

 ( )
31312211

~~

−−−−−−−−

−−=
nnnnnnnn

WeWdcWbW  (3) 

Subsequent considerations will be concerned with determinant 
1−n
W . We start with 

Laplace expansion with respect to the last column of matrix 
1−n

A , which leads to 

the linear combination of two determinants. The first of these determinants is equal 

to 
2

~

−n
W  and for the second determinant we apply Laplace expansion with respect to 

the last row and we obtain a linear combination of two determinants. The first of 

them is equal to 
3−n
W  and for the second determinant we use Laplace expansion 
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with respect to the last column, which leads to the linear combination of determi-

nants 
3−n
W  and 

4−n
W . Finally we get  

 ( )
431312211

~

−−−−−−−−−

−−=
nnnnnnnnn

WceWacWbW  (4) 

Bearing in mind relations (2), (3) and (4) we obtain a system of two linear recur-

rence equations  
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where 4>n . 
 

The above equations can be rewritten in the following form  








+−=

+−+−=

+++++++

++++++++++++++++

nnnnnnnnn

nnnnnnnnnnnnnnnnn

WecWdcWbW

WbeWdWeeccWaceWaW

~~

~~

2121122

2343443121324344

 (6) 

where N∈n . 
 

In order to obtain determinant 
n
W  of matrix 

n
A  we must take into account the  

system of equations (6) together with the initial conditions of the form 
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Hence the value of determinant of pentadiagonal matrix 
n

A  is the particular solu-

tion of the system of equations (6) fulfilling initial conditions (7). It can be  

observed that the direct solution of the system of equations (6) can be obtained  

only in some special cases. However, for an arbitrary but fixed N∈n  we can find 

determinant 
n
W  using computer algebra systems such as Maple, Mathematica and 

Matlab. 

 

Remark 1. 

If ( ) aa
n

kk
=

=1
, ( ) 0

1

1
=

−

=

n

kk
b , ( ) cc

n

kk
=

−

=

2

1
, ( ) 0

2
=

=

n

kk
d , ( ) ee

n

kk
=

=3
 in matrix (1), 

then we have 
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In this case the system of equations (6) reduces to one recurrence equation of the 

form 

 
nnnn

WceaceWaWW
22

134
+−=

+++
 (9) 

with initial conditions  

 aW =
1

, 2

2
aW = , aceaW −=

3

3
, 2224

4
2 ceceaaW +−=  (10) 

Hence the determinant of matrix (8) is the particular solution of equation (9) ful-

filling initial conditions (10). The above result was presented in paper [3]. 
 

Remark 2. 

If ( ) 0
2

1
=

−

=

n

kk
c , ( ) 0

3
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=

n

kk
e  in (1), then we obtain the tridiagonal matrix of the form 
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In this case system of equations (6) reduces to one recurrence equation of the form 

 
nnnnnn

WbdWaW
12122 +++++

−=  (12) 

fulfilling initial conditions  

 
11
aW = , 

21212
dbaaW −=  (13) 

Hence the determinant of tridiagonal matrix (11) is the particular solution of equa-

tion (12) fulfilling initial conditions (13). 
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2. Illustrative examples 

Now, we are to illustrate the general results obtained in the previous section. 

 

Example 1. 

Now, we consider matrix (1) of order nn×  setting ( ) 1
1
=

=

n

kk
a , ( ) 0
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−

=

n
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kk
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3
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n

kk
. From (6) the determinant of this matrix 

is given by the formula 

 0
134
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+++ nnnn
WWWW  (14) 

with initial conditions 
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3
==W ,  0
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21010
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4
==W  (15) 

Equation (14) is a fourth-order homogeneous linear recurrence equation with con-

stant coefficients. Following [4] we have that the general solution of equation (14) 

is determined by the roots of the characteristic equation 

 01
34

=−+− λλλ  (16) 

Roots of (16) are equal to 1
1
=λ , 1

2
−=λ , i

2

3

2

1

3
−=λ , i

2

3

2

1

4
+=λ . Hence 

the general solution of equation (14) has the form 
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3
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4321
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C

n
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n

n
++−+=  (17) 

Taking into account initial conditions (15) we obtain the system of linear equations 
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Substituting (18) to (17) we have the particular solution of equation (14) with ini-

tial conditions (15) in the form 

 ( )
3
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3

3

3
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1
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1 ππ nn
W

n

n
++−+=  (19) 

Formula (19) represents the determinant of the matrix under consideration. 
 

Example 2. 

Let us consider a special form of pentadiagonal matrix (1) in which elements on  

diagonals are defined by sequences of the form ( ) 2

1
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=
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1
+=
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. Moreover, assume that 
4
10=n , 

i.e. matrix has the order 44
1010 × . Bearing in mind (6) the determinant of this  

matrix is given by the system of two linear recurrence equations with functional 

coefficients of the form 
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with initial conditions 

 82,49,12,1,11
~

,2
~

432121
=−=−==== WWWWWW  (21) 

Let us observe that now we are dealing with a system of two linear recurrence 

equations with functional coefficients. It is impossible to solve this system using 

known analytical methods. Therefore, we use the Maple system in order to calcu-

late the determinant of the matrix under consideration. To this end let us denote 

WF
~

=  and apply the following syntax  

:]0),10000..1,([:
2
== nnseqa  

:]0),10000..1,1([: =+= nnseqb  

:]0),10000..1,32([: =−= nnseqc  

:]0),10000..2,23(,0[: =+= nnseqd  

:]0),10000..3,2(,0,0[:
2
== nnseqe  

:]1[:]1[ bF =  

:]2[]1[]2[]1[:]2[ dcbaF ⋅−⋅=  

:1:]1[ =W  
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:12:]2[ −=W  

:49:]3[ −=W  

:82:]4[ =W  

1 9997

[ 4] : [ 4] [ 3] [ 4] [ 2] [ 3] [ 1]

[ 2] [ 1] [ 3] [ 4] [ ] [ 4] [ 3]

[ 4] [ 3] [ 2] :

[ 2] : [ 1] [ 2] [ ] [ 2] [ 1] [ 1] [ 2] [ ] :

+ = + ⋅ + − + ⋅ + ⋅ + ⋅ + +

+ ⋅ + ⋅ + ⋅ + ⋅ − + ⋅ + +

+ ⋅ + ⋅ +

+ = + ⋅ + ⋅ + + ⋅ + − + ⋅ + ⋅

for from to do

end do

n

W n a n W n e n c n a n W n

c n c n e n e n W n d n F n

e n b n F n

F n c n e n F n b n W n c n d n W n

:

 

]))10000[(( Wevalfprint  

Finally we get 
71299

10414983547.1 ×  as the value of the determinant of the matrix 

under consideration. It can be emphasized that the above result was obtained with 

Maple default precision (Digits = 10).  

Conclusions 

It was shown that the determinant of the pentadiagonal matrix can be obtained 

as particular solution of the system of two homogeneous linear recurrence equa-

tions. The general considerations was illustrated by two examples. In Example 1 

the direct formula for determinant was obtained. In Example 2 the implementation 

of the proposed approach to Maple was presented. Moreover, it was presented that 

the above way leads to one linear recurrence equation for a determinant of the 

tridiagonal matrix. 
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