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Abstract. Using analytical methods we obtain the integral representation of a two-parameter 

Feller semigroup on a closed interval [��, ��] corresponding to such a diffusion phenomenon 

that sticking, partial reflection, absorption and jump phenomena occur at the endpoints 

��, �� and at some interior point � ∈ (��, ��). 
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Introduction 

Let �(�) be the Banach space of all real-valued continuous functions on a closed 

interval � = [��, ��]. Denote by �� ,  � = 1,2, the two intervals (��, �) and (�, ��), 
respectively, where −∞ < �� < � < �� < ∞ and by ��  the restriction of any func-
tion � defined on � to the closure ��.  

Assume that the inhomogeneous diffusion process is given on �� ,  � = 1,2, and 

it is generated by the second-order differential operator ��(�), � ∈ [0,�] (� > 0 fixed), 

with the domain of definition ��(��):  
��(�)��(	) =

1

2

�(�, 	)

����(	)�	� + ��(�, 	)
���(	)�	 ,  � = 1,2, 

where the diffusion coefficient 
�(�, 	) and the drift coefficient ��(�, 	) satisfy 
the conditions: 

1) there exist the constants 
 and  such that 0 < 
 ≤ 
�(�, 	) ≤  for all 

(�, 	) ∈ [0,�] × ��; 
2) for all �, � ′ ∈ [0,�],  	, 	 ′ ∈ �� the next inequalities hold: 

|
�(�, 	) − 
�(��, 	�)| ≤ � �|� − ��|�� + |	 − 	�|��, 

|��(�, 	) − ��(��,	�)| ≤ � �|� − ��|�� + |	 − 	�|��, 

where � and � are the positive constants, 0 < � < 1. 
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Define the differential operator ��,  � ∈ [0,�], as follows: 

����� = �� ∈ ����: �� ∈ � �������  for � = 1,2, ��������� = ����������, 

���(	) = ���(�)��(	),  	 ∈ ��,��(�)��(	),  	 ∈ ��.

� (1) 

Consider also the conjugation operator �� and the two boundary operators �����, ����� of Feller-Wentzell defined at points �, ��, ��, respectively, 

������ = �������(�) + ����� ���� −��	 − ����� ���� +��	 + �������� + 

+ � [

	�∪	�

�(�) − �( )]!(�,� ), 

���������� = ��������������� + (−1)�"���� �������	 + ���������� + 

+ �[

	�

����� − �( )]#�(�,� ), � = 1,2, 

where: 

a) the functions �(�), �����, � = 1,2, are positive and Hölder continuous with 

exponent 
�

�
 (� is the constant from 2)) on [0,�]; 

b) the functions �����, �����, ����, "����, ��(�) are nonnegative and continuous 
on [0,�]; 

c) for a fixed �, !(�,⋅) and #���,⋅�, � = 1,2, are the nonnegative measures on �� ∪ �� and ��, respectively, such that !��,�� ∪ ��� > 0, #���,��� > 0 and 

for all $ ∈ ���� the integrals 
� |

	�∪	�

 − �|$( )!(�,� ),  � |

	�

 − ��|$�( )#�(�,� ) 

exist and are Hölder continuous with exponent 
�

�
 on [0,�] as functions of 

variable �. 
It is known (see [1-3]) that the conjugation condition and the boundary condi-

tions  

���(�) = 0, ��(�)�(��) = 0,  � = 1,2, (2) 

restrict �� to the infinitesimal generator of some Feller semigroup in the space of 

continuous functions. Such a semigroup is constructed in the present paper. Thus, 

we are interested in the following problem: 
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Problem. Construct the two-parameter Feller semigroup ��
 ,  0 ≤ � < % ≤ �, on � 

whose infinitesimal generator is the restriction of �� in (1) to the set of all func-
tions � ∈ �(��) satisfying the conjugation condition and the boundary conditions 

of Feller-Wentzell in (2). 

This problem is often called the problem of pasting together two one-dimensional 

diffusion processes (see [4-8]). A process that is a result of pasting together 

two diffusions generated by ��(�) and ��(�), respectively, coincides with them in �� = (��, �) and �� = (�, ��) and its behaviour at each point �, ��, �� is determined 

by the corresponding condition in (2). The coefficients �, ��, � and the measure ! 

are supposed to correspond to the sticking phenomenon, the partial reflection 

phenomenon, the absorption phenomenon and the jump phenomenon, respectively 

(see [9, 10]). 

The study of the problem is performed by analytical methods. With such an 

approach the question on existence and construction of the operator family describ-

ing the required process in fact is being reduced to the investigation of the corre-

sponding problem of conjugation for a linear parabolic equation of the second 

order with variable coefficients, discontinuous at the point �. This problem is to 

find the function &��, 	, %� = ��
�(	) satisfying the following conditions: 

'&(�, 	, %)'� + ��(�)&(�, 	, %) = 0,  0 ≤ � < % ≤ �,  	 ∈ �� ,  � = 1,2, (3) 

lim
�↑


& (�, 	, %) = �(	),  	 ∈ �, (4) 

&(�, �−, %) = &(�, �+, %),  0 ≤ � < % ≤ �, (5) 

��&(�, �, %) = 0,  0 ≤ � < % ≤ �, (6) 

��(�)&(�, �� , %) = 0,  0 ≤ � < % ≤ �,  � = 1,2. (7) 

If � ∈ �(��), it is clear that the desired function ��
� is to satisfy the equation (3) 

and the “initial” condition (4). The condition (5) is the consequence of the Feller 

property of the desired semigroup ��
. Since ��
� ∈ �(��) when � ∈ �(��), 
the boundary conditions (6) and (7) are also to be satisfied. Taking into account 

that the semigroup ��
 is to be defined in �(�), we shall solve the problem (3)-(7) 

under the assumption that � ∈ �(�). 
The classical solvability of the problem (3)-(7) is established by the boundary 

integral equations method with the use of the ordinary fundamental solution of 

equation (3) and associated parabolic potentials. Application of this method per-

mits us to obtain the integral representation of the solution of the problem (3)-(7), 

which can be useful in studying additional properties of the constructed process 

(see [5, 6]). 

It is necessary to note that in the present paper we generalize the result obtained 

in [6] where the similar problem was analyzed in case two inhomogeneous 



B. Kopytko, R. Shevchuk 104

diffusion processes are given in �� = {	 ∈ ℝ: (−1)�	 > 0},  � = 1,2, with general 

Feller-Wentzell type conjugation condition imposed at the beginning. In [7] the 

problem (3)-(7) was solved in a special case � ≡ �� ≡ �� ≡ 0 and in [8] it was 

solved in case ≡ 1, �� ≡ �� ≡ 0. We should also mention works [11, 12], where 

the related problems were studied by the methods of stochastic analysis. 

1. Preliminaries 

Without loss of generality we may suppose that the coefficients ��(�, 	) and 
�(�, 	) in (3) are defined on [0,�] × ℝ and the conditions 1), 2) hold for all 

(�, 	) ∈ [0,�] × ℝ. We may also suppose that the function � in (4) belongs to ��(ℝ), where ��(ℝ) is the Banach space of real-valued bounded continuous func-

tions on ℝ with norm 

∥ � ∥= sup
�∈ℝ

|�(	)|. 

Denote by (�(�, 	, %,  ),  � = 1,2, the fundamental solution of the equation (3) in 

[0,�] × ℝ (its existence is assured by 1), 2)). Recall that the function (�  is non-
negative, continuously differentiable with respect to �, twice continuously differen-

tiable with respect to 	 and can be represented as (see [13-15]) 

(�(�, 	, %, ) = )�(�, 	, %, ) + )��(�, 	, %, ), (8) 

where 

)�(�, 	, %, ) = *2#
�(%, )(% − �)+�� exp	 �−
( − 	)�

2
�(%, )(% − �)
-, 

and the function )�� satisfies the inequality 
.������)��(�, 	, %, ). ≤ �(% − �)


�������

� exp	 �−ℎ
( − 	)�% − � - (9) 

for all 0 ≤ � < % ≤ �,  	, ∈ ℝ, where � and " are the nonnegative integers so that 

2� + " ≤ 2; ��� is the partial derivative with respect to � of order �; ��� is the par-
tial derivative with respect to 	 of order "; �, ℎ are positive constants

1
; � is the 

constant in 2). In addition, 

.������(�(�, 	, %, ). ≤ �(% − �)

������

� exp	 �−ℎ
( − 	)�% − � -, (10)

where 0 ≤ � < % ≤ �,  	, ∈ ℝ,  2� + " ≤ 2. 

                                                      
1 We will subsequently denote various positive constants by the same symbol � (or ℎ). 
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Given fundamental solution (� ,  we define the parabolic potentials that will be 

used to solve the problem (3)-(7), namely the Poisson potential  

&��(�, 	, %) = �(�
ℝ

(�, 	, %, )�( )� , 

and the simple-layer potentials 

&��(�, 	, %) = �(�


�

(�, 	, /, �)0�(/, %)�/, 

 &��(�, 	, %) = �(�


�

(�, 	, /, ��)0���(/, %)�/, 

where 0 ≤ � < % ≤ �,  	 ∈ ��;  � is the function in (4); 0�,  1 = 1,4, are continu-
ous functions in � ∈ [0, %) satisfying the inequality 

|0�(�, %)| ≤ �(% − �)��� 

for any 2 > 0. 

Note that the functions &��, &��, &�� satisfy the equation (3) in the domains 

[0, %) × �� , [0, %) × (�� ∖ {�}), [0, %) × (�� ∖ {��}), respectively, and the initial 

conditions  

lim
�↑


&�� (�, 	, %) = �(	),  	 ∈ �� , 
lim
�↑


&�� (�, 	, %) = 0,  	 ∈ �� ∖ {�},  lim
�↑


&�� (�, 	, %) = 0,  	 ∈ �� ∖ {��}. 

In addition, the relations 

.������&��(�, 	, %). ≤ � ∥ � ∥ (% − �)

����
� ,  2� + " ≤ 2, (11)

'&��(�, �∓, %)'	 = ±
0�(�, %)
�(�, �)

+ �')��(�, �, /, �)'	



�

0�(/, %)�/, (12)

'&��(�, �� , %)'	 = (−1)�
0���(�, %)
�(�, ��) + �')��(�, �� , /, ��)'	




�

0���(/, %)�/, (13)

hold. 

Note also that the last two relations follow from the theorem on the jump 

of the conormal derivative of a simple-layer potential (see [14, Ch. V, §§2-4]). 
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2. Solution of the parabolic conjugation problem 

The aim of this section is to establish the classical solvability of the conjugation 

problem (3)-(7). 

We find the solution of (3)-(7) of the form (	 ∈ �� , 0 ≤ � < % ≤ �) 

&(�, 	, %) = &��(�, 	, %) + &��(�, 	, %) + &��(�, 	, %) (14)

with the unknown functions 0�,  1 = 1,4, to be determined. First we note that 

in view of relations (3)-(5) the conditions (6), (7) reduce to 

&��, �, %� = ���� − �3(/, %)�/


�

, (15)

&��, �� , %� = ����� − � ℎ�(/, %)�/


�

, (16)

where 

3�/, %� =
1��/� 4���/� '&�/, �−, %�'	 − ���/� '&�/, �+, %�'	 + ��/�&�/, �, %�

+ � [

	�∪	�

&(/, �, %) − &(/, , %)]!(/,� )5, 

ℎ��/, %� =
1��(/)

4�−1��"��/� '&�/, �� , %�'	 + ���/�&�/, �� , %� + �[

	�

&�/, �� , %�
− &(/, , %)]#�(/,� )5. 

Then, substituting (14) into (15) and (16), we get, upon using the relations (12), 

(13), the system of Volterra integral equations of the first kind 

6�7����, /�


�

�

���

0��/, %��/ = 8���, %�, 				0 ≤ � < % ≤ �, � = 1,4, (17)

where 

7����, /� = (���, �, /, �� +
���/���/�
��/, �� + ���9���9�

�

�

(��9, �, /, ���9 + 

+:�����(���, 	, /, ��|��� 	, 			� = 1,2, 
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7�	����, /� =
����/���/�
���/, �� + :������(����, 	, /, ��|��� 	, � = 1,2, 

7�	�����, /� = (���, �, /, ��� + ���9���9�
�

�

(��9, �, /, ����9 + 

+:�����(���, 	, /, ���|��� 	, � = 1,2, 

7�	����, /� = :������(����, 	, /, ����|��� 	, � = 1,2, 

:�
���$��, 	, %� = ��−1���� ���9���9� ∂$�9, 	, %�
∂	




�

�9 + 

+��9 �[

	�

$�9, 	, %� − $�9, , %�]
!(9,� )��9�




�

, � = 1,2, 

7����, /� = (����, ���, /, ���� +
"���/�����/�
���/, ���� + 

+;������(����, 	, /, ����|������
	, � = 3,4, 

7�	����, /� = (����, ���, /, �� + ;������(����, 	, /, ��|������
	, � = 3,4, 

7�	����, /� = 7�	����, /� = 0, � = 3,4, 

;�
���$��, 	, %� = �<�−1�� "��9����9� ∂$�9, 	, %�
∂	 +

���9����9� $�9, 	, %�5 �9 +




�

 

+��9 �[

	�

$�9, 	, %� − $�9, , %�]
#�(9,� )���9�




�

, � = 1,2, 

8���, %� = ���� − &����, �, %� − ���9���9� &���9, �, %��9


�

− 6:�
���&��(�, 	, %)|���

�

���

	 ,
� = 1,2, 

8���, %� = ������ − &��	���, ���, %� − ;�
����&��	���, 	, %�|������ 	, 		� = 3,4. 

Now we have to reduce (17) to the system of Volterra integral equations of the 

second kind. For this purpose we consider the Holmgren transform 

ℰ�
Δ��, %� = =2# ''��(




�

9 − �)

�
�Δ�9, %��9,  0 ≤ � < % ≤ �, 

and apply it to both sides of each equation in (17). We get (� = 1,4) 
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=2# ''�6�(




�

9 − �)

�
��9�7��(




�

�

���

9, /)0��/, %��/ = ℰ�
8���, %�. (18)

Changing the order of integration in the right side of (18) and using the fact that 

''��$��,9��9 = � ''� $��,9��9,




�




�

 

when  lim�→� $��,9� = 0, we can write 

=2# ''��0��/, %��


�

/��9 − �����

�

7���9, /��9 + 

+6�0��/, %�ℰ��7��(�, /)�


�

/
���

= ℰ�
8���, %�, � = 1,4. 

Denote by 7��(�) the principal part of the fundamental solution which is the first 

term in the expression for 7�� , i.e.,  
7�����(�, /) = >)���, �, /, ��,																								� = 1,2,)����, ���, /, ����, � = 3,4,

� 
and by 7��(�) all the rest of terms in the corresponding expression, so that 7�� = 7��(�) + 7��(�), � = 1,4. It is easy to verify that 

=2# ''��0��/, %��


�

/��9 − �����

�

7��(�)�9, /��9 = −
0���, %���(�)

, � = 1,4, 

where 

����� = �?
���, ��,												� = 1,2,?
����, ����,			� = 3,4.

� 
We therefore obtain the following system of Volterra integral equations of the 

second kind, which is equivalent to (17): 

0�(�, %) = 6�@��


�

�

���

(�, /)0�(/, %) + A�(�, %),  � = 1,4, (19)



One-dimensional diffusions in bounded domains with a possible jump-like exit from a sticky boundary 109

where 

@����, /� = ������ℰ��7�������, /�, � = B,�����ℰ��7����, /�,				� ≠ B, �          A���, %� = −�����ℰ�
8���, %�. 

Note that for kernels @�� and functions A� in (19) the inequalities 
 .@����, /�. ≤ �(/ − �)

��
�

� 	, (20) 

 |A���, %�| ≤ �‖�‖(% − �)

�

�	,  (21) 

hold. To show how we estimate @�� consider in detail the case � = B ∈ {1, 2}. Thus, 

we have to estimate @����, /� = ?
���, ��ℰ��7�������, /�, � = 1,2. Applying the 

transform ℰ�� to 7�����, we can write @�� in the form 

@����, /� = =2
���, ��# EF�(�)��, /� + F�(�)��, /� + F�(�)��, /�G , � = 1,2, 

where 

F�(�)��, /� =
1

2
��9 − �����

�

�)����, �, /, ��−)���9, �, /, ����9, 

F�(�)��, /� = ��9 − �����

�

H�−1�� ���9���9� ∂)���9, �, /, ��
∂	 −

��9���9�(��9, �, /, ��I �9 + 

+J)����, �, /, �� −
���/���/�
��/, ��K �/ − ����, 

F�(�)��, /� = −��9 − �����9�

�

�*(��9, �, /, �� − (��9, , /, ��+
	�

!(9,� )��9� . 

If we apply the Lagrange formula to increment )����, �, /, ��−)���9, �, /, �� in the 
expression for F�(�) and use the inequality (9), we deduce that the estimate (20) is 

valid for F�(�). The estimate (20) for F�(�) follows easily from inequalities (9) and 

(10). In order to verify (20) for F�(�) it suffices to consider the integral 
L���, /� = −��9 − �����9�

�

�*)��9, �, /, �� − )��9, , /, ��+
	�

!(9,� )��9� , 

which differs from F�(�) in that it contains )�  instead of (� . Let us write L� in the 
form 
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L���, /� = L����, /� + L����, /�, 

where 

L����, /� = −��9 − �����9�

�

�*)��9, �, /, �� − )��9,  , /, ��+
	�

!(/,� )��/� , 

L����, /� = ��9 − �����9�

�

�*)��9, �, /, �� − )��9, , /, ��+
	�

E!(/,� )��/� −
!(9,� )��9� G. 

For L����, /� we have 

|L����, /�| ≤
1√2#
�(

�

�

9 − �)

�
�(/ − 9)


�
��9 �J1 − N(��)���⋅(��)K

	�

!(/,� )��/� = 

= −
1√2#
�(

�

�

9 − �)

�
�(/ − 9)


�
��9 �!(/,� )��/�

	�

� ''O
�

�

N�(��)���⋅���� �O = 

=
1

2�√2�� � |� − �|!(/,� )��/�
 �

� |� − �|	��(���)
�

��⋅(��	) 
�
�




� 	��(���)
�

��⋅(��	)
⋅
��	
���

(9 − �)��(/ − 9)��


	


�, 

where 
 is the constant in 1). The change of variables P =
�−�

�−�
 in the inner integral 

in the last relation leads to 

|L��| ≤
1

2
√2#
(/ − �)
� | − �|

!(/,� )��/�
	�

� | − �|N�(��)���⋅(
�)

�

�

�O� P��!

�

N�(��)���⋅(
�)
⋅"�P ≤ 

       ≤ �(/ − �)

�

�.   (22) 

In view of property c) of measure !, we can estimate L����, /�. We deduce that 

 L#2 ≤ �(� − �)
−
1

2
+
α

2. (23) 

By combining inequalities (22) and (23) we obtain that 

L���, /� ≤ �(� − �)

�
�. 

It is clear that the same estimate is also valid for F�(�)��, /�.  

Having estimated each function F�(�)��, /�, F�(�)��, /� and F�(�)��, /�, we con-

clude that for @����, /� in case � = B ∈ {1, 2} the inequality (20) holds. Similarly, 

the inequality (20) is valid for kernels @����, /�, when �, B ∈ {1, … ,4}. 
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Proceeding as in proof of the estimate (20), one can also prove the estimate (21) 

for functions A� , � = 1,4. 

From (20) and (21) it follows that there exists a solution of the system of integral 

equations (19) which can be obtained by the method of successive approximations 

0�(�, %) = 60�(�)!

���

(�, %),  0 ≤ � < % ≤ �,  � = 1,4, (24)

where 

0�(�)(�, %) = A�(�, %), 

0������, %� = 6�@��


�

�

���

��, /�0������/, %��/,  1 = 1,2, … 

Furthermore, functions 0� satisfy the inequality 
|0�(�, %)| ≤ � ∥ � ∥ (% − �)


�
�,  0 ≤ � < % ≤ �. (25)

We have thus constructed a solution &(�, 	, %) of the problem (3)-(7) which is of 

the form (14). Using the relations (8)-(11) and the estimate (25) it is easy to verify 

that 

&(�, 	, %) ∈ ��,�([0, %) × (�� ∪ ��)) ∩ �([0, %] × �). 

Concerning the uniqueness of the solution of (3)-(7), note that it follows from 

the maximum principle (see [14, Ch. II]). 

We have proved the following theorem: 

Theorem 1. Let the conditions 1), 2) and a)-c) hold, and let � ∈ �(�). Then the 

problem (3)-(7) has a unique solution 

&(�, 	, %) ∈ ��,�([0, %) × (�� ∪ ��)) ∩ �([0, %] × �). 

Furthermore, this solution can be represented as 

&(�, 	, %) = �(�
ℝ

(�, 	, %, )�( )� + �(�


�

(�, 	, /, �)0�(/, %) 

+�(�


�

(�, 	, /, ��)0���(/, %)�/,  0 ≤ � ≤ % ≤ �,  	 ∈ �� ,  � = 1,2, 

where the collection �0�����,� is the solution of the system of Volterra integral 

equations of the second kind (19). 
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3. Construction of Feller semigroup 

We introduce the two-parameter family of linear operators 

��
�(	) = &(�, 	, %,�),  0 ≤ � ≤ % ≤ �,  	 ∈ �,  � ∈ ��(ℝ), (26)

where &(�, 	, %,�) is the solution of problem (3)-(7) with function � in (4), and 

proceed to study its properties in space ��(ℝ). 
First we note that if �$ ∈ ��(ℝ) is a sequence of functions such that 

sup
$

∥�$ ∥< ∞ and  lim
$→!

�$ �	� = ��	�,  	 ∈ �, 

then 

lim
$→!

��
 �$�	� = ��
��	�,  0 ≤ � ≤ % ≤ �,  	 ∈ �. 

This property easily follows from Lebesgue bounded convergence theorem. 

We next prove that the operators ��
 ,  0 ≤ � ≤ % ≤ �, are positivity preserving. 

Lemma 1. If � ∈ ��(ℝ) and �(	) ≥ 0 for all 	 ∈ �, then ��
�(	) ≥ 0 for all 

0 ≤ � ≤ % ≤ �,  	 ∈ �. 

Suppose that ��
�(	) takes negative values in [0, %] × � and we denote by Q its 

minimum in [0, %] × �. Then, by the minimum principle, value Q may be attained 

only on (0, %) × {��, �, ��}. Let ���
�(	�) = Q, (��,	�) ∈ (0, %) × {��, �, ��}. 

In case 	� = � the inequalities 
��(��)

'���
��� −�'	 ≤ 0, ��(��)
'���
��� +�'	 ≥ 0, 

�(��)���
���� ≤ 0,  � [

	�∪	�

���
�(�) − ���
�( )]!(��,� ) < 0 

hold and therefore ������
�(�) < 0. This contradicts (6). Similarly, the case 	� = �� ,  � ∈ {1,2} leads us to the inequality ������
�(��) < 0 which contradicts 

(7). The contradiction at which we arrived indicates that Q ≥ 0. This completes 

the proof of the lemma. 

By similar considerations to those in the proof of Lemma 1, one can easily 

verify that the operators ��
 are contractive, i.e.,  
∥ ��
 ∥≤ 1,  0 ≤ � ≤ % ≤ �. 

Note also that the operator family ��
 has a semigroup property 

��
 = �����
 ,  0 ≤ � ≤ / ≤ % ≤ �, (27)
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This property is a consequence of the assertion of the uniqueness of the solution of 

the problem (3)-(7). Indeed, considering the problem (3)-(7) in the time interval 

[�, /] with the function ��
�,  / ≤ % ≤ �, taken as the “initial” function, we deduce 

that ������
��,  0 ≤ � ≤ / ≤ % ≤ �, is the solution of (3)-(7) with the function � 

in (4), and hence (31) follows. 

By combining the above properties we conclude (see [15], Ch. II) that ��
 , 
0 ≤ � ≤ % ≤ �, is a Feller semigroup on � for which there exists a unique transi-

tion function :(�, 	, %,⋅) on � such that  

��
�(	) = �:
	

(�, 	, %,� )�( ),  0 ≤ � ≤ % ≤ �,  	 ∈ �,  � ∈ ��(ℝ). 

Thus, we have proved the following theorem: 

Theorem 2. Let the conditions of Theorem 1 hold. Then the two-parameter 

semigroup of operators ��
 ,  0 ≤ � ≤ % ≤ �, defined by formula (26) describes the 

inhomogeneous Feller process on � which coincides on �� and �� with the diffu-

sion processes generated by ��(�) and ��(�), respectively, and its behavior at each 
point �, ��, �� is determined by corresponding conjugation condition or  boundary 

condition of Feller-Wentzell in (2). 

Acknowledgment 

This work was supported by the National Academy of Sciences of Ukraine and the Russian 

Foundation for Basic Research, grant No. 09-01-14. 

References 

[1] Feller W., The parabolic differential equations and associated semi-groups of transformations, 

Ann. Math. 1952, 55, 468-518. 

[2] Wentzell A.D., Semigroups of operators that correspond to a generalized differential operator 

of second order, Dokl. AN SSSR 1956, 111, 2, 269-272 (in Russian). 

[3] Langer H., Schenk W., Knotting of one-dimensional Feller process, Math. Nachr. 1983, 113, 

151-161. 

[4] Kopytko B.I., Sewing two nonhomogeneous diffusion processes on a straight line, Ukrainian 

Math. Journal 1983, 35, 2, 135-141. 

[5] Portenko M.I., Diffusion Processes in Media with Membranes, Institute of Mathematics of the 

NAS of Ukraine, Kyiv 1995 (in Ukrainian). 

[6] Kopytko B.I., Shevchuk R.V., On pasting together two inhomogeneous diffusion processes on 

a line with the general Feller-Wentzell conjugation condition, Theory of Stochastic Processes 

2011, 17(33), 2, 55-70. 

[7] Kopytko B.I., Shevchuk R.V., Diffusions in one-dimensional bounded domains with reflection, 

absorption and jumps at the boundary and at some interior point, Journal of Applied Mathematics 

and Computational Mechanics 2013, 12(1), 55-68. 



B. Kopytko, R. Shevchuk 114

[8] Kopytko B.I., Shevchuk R.V., One-dimensional diffusion processes in bounded domains with 

boundary conditions and conjugation condition of Feller-Wentzell, Bukovinian Math. Journal 

2013, 1, 1-2, 77-85. 

[9] Feller W., Diffusion processes in one dimension, Trans. Amer. Math. Soc. 1954, 77, 1-31. 

[10] Taira K., Boundary Value Problems and Markov Processes, Lecture Notes in Mathematics, 

1499, Springer-Verlag, Berlin-Heidelberg 2009. 

[11] Anulova S.V., On stochastic differential equations with boundary conditions in a half-plane, 

Izv. AN SSSR Ser. Mat. 1981, 45, 3, 491-508 (in Russian). 

[12] Pilipenko A.Yu., On the Skorokhod mapping for equations with reflection and possible jump-

like exit from a boundary, Ukrainian Math. J. 2012, 63, 9, 1415-1432. 

[13] Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N., Linear and Quasilinear Equations 

of Parabolic Type, Nauka, Moscow 1967 (in Russian). 

[14] Friedman A., Partial Differential Equations of Parabolic Type, Mir, Moscow 1968 (in Russian). 

[15] Dynkin E.B., Markov Processes, Fizmatgiz, Moscow 1963 (in Russian). 


