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Abstract. In the paper, the solution of second order differential equations with various 

coefficients is presented. The concerning equations are written as first order matrix differ-

ential equations and solved with the use of the power series method. Examples of applica-

tion of the proposed method to the equations occurring in the technical problems are 

presented. 
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Introduction 

The goal of many researchers’ work is finding new and improving existing 

various methods for solving ordinary differential equations. In various types of 

differential equations (linear and non-linear, with constant or variable coefficients), 

occurring, for example, in technical specification number of issues, it is possible to 

designate the exact solution analysis, and in the others, however, it is necessary to 

approximate methods. One of the classical methods, known since the seventeenth 

century, in solving differential equations is the method of power series, involving 

the appointment of a solution in the form of an infinite Taylor series (series coeffi-

cients are obtained from recursive equations). This method was applied e.g. by 

Eisenberger in [1] to solve the second order differential equation describing rods 

vibration problems and by Quaisi in [2] for the non-linear free vibration of beams 

with restrained ends. In turn, Zhou in [3] proposed a method of differential trans-

formation - an improved method of power series, differing the way of determining 

the coefficients of the series. A power series method with domain partition in 

an implemented matrix formulation is another method, alternative to other tech-

niques of power series [4]. 

In this paper, the method of solving second order ordinary differential equation 

will be presented by transforming this equation in the system of differential equa-

tions of the first order, then presenting it in matrix notation and solving with the 

use of power series method. As examples there will be presented solutions of two 

classic equations: the Airy equation and equation occurring in the description of 

the rod’s vibration. 
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1. Formulation and solution of the problem 

Let us consider the first order matrix differential equation 
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We are looking on solution of the equation (1) in the form of power series 
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After transformations in equation (3) we get the following recursive relation 
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The coefficients Yn may be written as: 
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Finally, a solution of an inhomogeneous matrix differential equation (1) can be 

expressed as a sum 
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2. Examples of method’s application 

Let the ordinary differential equation of second order with variable coefficients 
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with the conditions: 
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Initial and boundary equations (8) are as follows: 
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Airy equation 

Schrödinger equation, one of the fundamental equations of non-relativistic 

quantum mechanics, under certain assumptions can be reduced to the Airy equation 
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 ( ) ( ) 0y x xy x′′ + =  (13) 

which has a well-known analytical solution in the form: 
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where J(·) is a Bessel function of the first kind and constant values C1, C2 depend 

on the selected initial conditions. 

Using the matrix notation we have 
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Solution of Airy equation (13) in a matrix form may be written as 
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where the first few values of Ψ
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By using designations: 
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(B0 = M2 , B1 = –M3), it can be seen that sets of matrices {Ο, M0 , M1 , M2 , M3 , M4 } 

with sets multiplication create a semigroup. The algebraic properties of pair 

({Ο, M0 , M1 , M2 , M3 , M4 }, ×) describes the multiplication table (Table 1). 
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Table 1 

Multiplication table 

× M0 M1 M2 M3 M4 

M0 M0 M1 M2 M3 M4 

M1 M1 M1 M2 Ο Ο 

M2 M2 Ο Ο M1 M2 

M3 M3 M3 M4 Ο Ο 

M4 M4 Ο Ο M3 M4 

Equation    ( ) ( ) 0
d dy

p x k p x y
dx dx

 
+ = 

 
 (18) 

This type of equation occurs frequently in problems of mechanics, for example 

in the vibration’s description of rods or strings. The functions occurring in the 

equation have a physical interpretation: y(x) is a function of deflection, p(x) is 

a cross-section area and k  is a parameter characterized vibration frequency of 

the mechanical system under consideration. 

Suppose that ( ) x

p x e
α−

=  where α is a constant, 0,1x∈ . The general solution 

of homogeneous equation (18) is [5] 
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Matrices B and F existing in the equation (1) are as follows: 
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Series coefficients of the solution of (18) are: 
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Conclusions 

The method of solving second order linear differential equations, presented 

in the work, may be used for solving n-th order linear equations. Any of these 

equations can be represented by a system of n first order linear differential equa-

tions with more than one dependent variable and, as the result, by one first order 

differential matrix equation. Although this method shouldn’t be applied indiscrimi-

nately, it is suitable to solve, particularly, equations of arbitrary order with variable 

coefficients which typically arise in vibration or heat transfer problems. 
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