
Journal of Applied Mathematics and Computational Mechanics 2015, 14(1), 27-42

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2015.1.03 e-ISSN 2353-0588

A CATEGORICAL MODEL OF PREDICATE LINEAR LOGIC

Emília Demeterová, Daniel Mihályi, Valerie Novitzká

Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics
 Technical University of Košice

 Košice, Slovak Republic
emilia.demeterova@tuke.sk, daniel.mihalyi@tuke.sk, valerie.novitzka@tuke.sk

Abstract. Linear logic is one of the logical systems with special properties suitable for

describing real processes used in computer science. It enables one to specify dynamics, non

determinism, consecutive processes and important resources as memory and time on syn-

tactic level. Moreover, its deduction system enables one to verify specified properties.

Constructing an appropriate model based on categories can serve for modeling various pro-

gram systems in the wide spectrum of computer science. Mainly, propositional linear logic

is used for these purposes. The expression power of linear logic significantly grows by

extending propositional logic with predicates and quantifiers. Our paper concerns itself

with defining predicate linear logic together with its deduction system and our main aim is

to construct a categorical model of predicate linear logic as a symmetric monoidal closed

category.

Keywords: linear type theory, predicate linear logic, symmetric monoidal closed category

Introduction

Linear logic was introduced by Jean-Yves Girard in 1987 [1]. Linear logic is the

only logic from the existing logical systems which is able to describe processes as

they behave in real world. It can describe dynamics of processes, external or inter-

nal non determinism, consecutive processes manage with resources on a syntactic

level. Linear logic can be considered as a bridge between computer science and

logic.

Propositional linear logic is often used for describing program systems [2, 3],

their behavior [4] and its extension with modal operators enables the modeling of

knowledge achievement [5].

In spite of these useful properties of propositional linear logic, its expressive

power is insufficient for describing properties of some objects and relations

between them. For these purposes are appropriate predicates together with quanti-

fiers as it provides predicate logic. Therefore in this paper we formulate predicate

linear logic, its syntax, deduction system and categorical model. Calculations can

be expressed by linear terms. Properties and relations of calculations can be

E. Demeterová, D. Mihályi, V. Novitzká 28

expressed by predicates. Quantifiers are able to specify a group of objects for

which some feature or relation is valid. In the future we plan to use predicate linear

logic for specifying component based systems [6], especially for describing inter-

actions and dependencies between components. In the next section we shortly

introduce propositional linear logic, its syntax and deduction calculus. In section 2

we define the linear type theory and its model as a symmetric monoidal closed cat-

egory. Section 3 contains syntax and deduction calculus of a multiplicative frag-

ment of predicate linear logic and in section 4 we construct a categorical model of

predicate linear logic.

1. Propositional linear logic

Linear logic has much greater expressive power than classical logic thanks to

more connectives with special properties. Besides, every formula of classical prop-

ositional logic can be expressed in linear logic, too.

One of the most important properties of linear logic is its ability to describe

dynamics of processes. By linear implication ⊸ it is able to express changes,

sequentiality and causality of processes.

Another important property of linear logic is its ability to handle resources -

with logical space and logical time [3]. It allows one to express the internal struc-

ture of the resources, their consumption together with a continuance of processes

by the incrementation of time. Resources used in linear logic, logical space and

logical time are the most important resources used in computer science, too. These

resources are used at calculating a running program.

In same cases it is advisable to use only some fragments [7] of linear logic, e.g.

multiplicative, additive. An interesting fragment is intuitionistic linear logic which

satisfies Curry-Howard correspondence [8, 9] with the computing system such as λ

- calculus.

Linear logic defines new logical connectives [10]. Depending on the fragments

of linear logic there exist multiplicative conjunction ⊗, multiplicative disjunction

℘, additive conjunction &, additive disjunction ⊕, linear implication ⊸. Inex-

haustibility of resources can be described by modal operators ! of course and ? why

not.

1.1. Syntax of propositional linear logic

In this section we introduce the syntax of propositional linear logic. Let

 Prop = {p1, p2, … , pn}

be a countable set of elementary sentences denoted by p1, p2, … . Every formula

can be understood either as a resource or as an action. A linear formula φ has one

of the following forms defined by the BNF rule:

A categorical model of predicate linear logic 29

φ ::= p | 1 | 0 | T | ⊥ | φ⊗φ | φ⊕φ | φ&φ | φ℘ϕ | φ⊸φ | φ⊥

| !φ | ?φ

• Formula φ ⊗ ψ expresses a multiplicative conjunction and it has the neutral

element 1. This formula expresses that both actions are performed simultane-

ously or both resources are available at once.

• Formula φ & ψ expresses an additive conjunction and it has the neutral

element T. This formula expresses that only one of the actions is performed but

we can anticipate or deduce which one from the environment. We can call this

external non determinism. In the case of resources only one of them is available.

• Formula φ ⊕ ψ expresses additive disjunction and it has the neutral element 0.

This formula expresses that only one of the actions is performed but we cannot

anticipate which one. We can call this internal non determinism.

• Formula φ℘ψ expresses multiplicative disjunction and it has the neutral

element ⊥ . This formula expresses that if the first action is not performed then

the second one is performed or vice versa.

• Expression φ
⊥
 is called linear negation and it denotes a reaction of an

action φ or a consumption of a resource φ. Linear negation is involutive

φ⊥⊥

≡ φ.

• Formula !φ is a modal formula with the modal operator of course. It expresses

the potential inexhaustible resource φ.

• Formula ?φ uses the modal operator why not and it expresses the actuality of

potential resource inexhaustibility. Modal operators of course and why not are

dual

(!φ)⊥

≡ ?(φ⊥).

• Formula φ ⊸ ψ expresses linear implication. This formula expresses that the

first action is a cause of the second action or in the case of resources, it express-

es that the first resource is consumed after linear implication.

Linear implication expressed by the modal operator of course !

!φ ⊸ φ

is an analogy to classical implication φ ⇒ φ.

1.2. Deduction calculus for linear logic

We describe the deduction system of linear logic by sequent calculus defined by

Gentzen. A sequent has the form

φ1,…, φn ⊢ ψ1,…, ψm,

E. Demeterová, D. Mihályi, V. Novitzká 30

where formulae φ1 ,…, φn are assumptions implying at least one of the formulae

ψ1 ,…, ψm.

The deduction system of linear logic consists of the rules for the connectives, con-

stants and modal operators of linear logic.

The deduction rules have the form

��	, … 	 , ��
�

where the sequence of sequents S1,...,Sn contains conditions that have to be valid in

order to deduce the conclusion S.

The deduction system of propositional linear logic has the following deduction

rules:

	

�⊢�
(��) (1)

�⊢�,�					��,�⊢��	

�,��⊢�	,��
(���) (2)

�,�,�⊢�	

�,�⊗�⊢�	
(⊗) (3)

�⊢�,�					��⊢�,��

�,��⊢�⊗�,�	,��
(⊗
) (4)

�⊢�	

�,�⊢�	
(⊤) (5)

	

⊢�	
(⊤
) (6)

�,�⊢�					��,�⊢��	

�,��,�℘�⊢�	,��
(℘) (7)

�⊢�,�,�		

�⊢�℘�,�	
(℘
) (8)

	

�⊢	
(⊥) (9)

	�⊢�		

�⊢�,�		
(⊥
) (10)

�⊢�,�					��,�⊢��	

�,��,�⊸�⊢�	,��
(⊸) (11)

�,�⊢�,�	

�⊢�⊸�.�	
(⊸
) (12)

�,�⊢�	

�,!�⊢�	
(�	
�
��
�) (13)

!�⊢�,?�	

!�⊢!�,?�	
(�	
�
��
�
) (14)

!�,�⊢?�	

!�,?	�⊢?�	
(�
	
�����
�) (15)

�⊢�,�	

�⊢?�,�	
(�
	
�����
�
) (16)

�⊢�	

�,!�⊢�	
(�) (17)

�⊢�	

�⊢?�,�	
(�
) (18)

�,!�,!�⊢�	

�,!�⊢�	
(�) (19)

�⊢?�,?�,�	

�⊢?�,�	
(�
) (20)

�,�⊢�	

�,�&�⊢�	
(&	
) (21)

�,�⊢�	

�,�&�⊢�	
(&	�) (22)

�⊢�,�			�⊢�,�	

�⊢�&�,�	
(&
) (23)

			

�⊢
,�		
(�
) (24)

A categorical model of predicate linear logic 31

�,��			�,�⊢�

�,�⊕�⊢�	
(⊕) (25)

�⊢�,�	

�⊢�⊕�,�	
(⊕

) (26)

�⊢�,�	

�⊢�⊕�,�	
(⊕
�) (27)

			

�,�⊢�		
(�) (28)

� ⊸ � ≡ ��	℘	�

� ⊸ � ≡ (�⊗ 	��)�
 (29)

Many approaches exist to express the semantics of predicate linear logic.

Primarily the semantics of linear logic was expressed by coherent spaces [1-10] or

by quantales [11]. Phase semantics [13] does not say anything about connectives

and expresses only the truth of the statements. Heyting's semantics [12] is not

interested in the truth of the expressions, but their sense. This semantics is im-

portant only if there exists a provable formula.

In constructing a model of predicate linear logic, we follow the idea that every

elementary linear formula can be represented as a type. First, we define linear type

theory and then we construct a categorical model of predicate linear logic.

2. Linear type theory

To introduce predicates into linear logic, we have to define types and linear

terms. Every programming language includes some predefined basic types. Let

B = {X, Y, Z} be a set of basic types and I the unit type. The syntax of linear types

[14] are defined by the following BNF grammar:

σ ::= X | I | σ⊗σ | σ⊸σ

where

• X is a basic type;

• I is the unit type;

• σ⊗σ is a linear product type;

• σ⊸σ is a linear function type.

2.1. Linear terms

Linear terms are expressed by operations and variables. First, we define linear

preterms.

Let Var(σ) be a set of variables of type σ. Let Preterm σ be a set of preterms types

of σ constructed as

• () ∈Preterm (I) is an empty linear preterm;

• x ∈Preterm (σ) is a linear preterm of types σ, if x∈var(σ) is a variable of

type σ;

E. Demeterová, D. Mihályi, V. Novitzká 32

• (s,t)∈Preterm(σ⊗τ) is a linear preterm of product type σ⊗τ, if

s∈Preterm(σ) and t∈ Preterm(τ) are linear preterms;

• α(s)∈Preterm(τ) is a linear preterm of type τ if s∈ Preterm(σ) is a linear

preterm and α: σ ⊸⊸ τ is a function.

Linear terms have the following syntax:

t ::= x | f(t,...,t)

i.e. a term is either a variable or application of function. Every term has associated

a unique type and we denote typed terms in sequent form as

Γ ⊢ t: σ

where Γ is a finite sequence of typed variables x1:σ1,...,xn:σn.

Linear term s of type σ is a preterm s∈Preterm(σ) in which every variable

occurs only once. A linear combinator is a closed linear term, i.e. all variables

occuring in the term are bounded. We introduce several linear combinators

expressing special properties needed for modeling the linear type theory:

• linear combinator Idσ expresses identity on the type σ

Idσ :σ → σ;

• linear combinator assl expresses left associativity on types σ, τ, χ

asslσ, τ, χ :σ⊗(τ⊗ χ) → (σ⊗ τ)⊗ χ;

• linear combinator assr expresses right associativity on types σ, τ, χ

assrσ, τ, χ :(σ⊗ τ)⊗χ → σ⊗(τ⊗ χ);

• linear combinator swap expresses commutativity on type

swapσ,τ:σ⊗ τ → τ⊗ σ;

• linear combinator open expresses left neutral element

openσ:σ → 1⊗σ;

• linear combinator close expresses right neutral element

closeσ:1⊗ σ → σ;

• linear combinator eval expresses evaluation over types

evalσ⊸τ:(σ⊸τ)⊗σ→ τ.

A categorical model of predicate linear logic 33

We can construct generalized combinators with the rules of composition, prod-

uct and abstraction [9] from linear combinators and function symbols where α, β, γ

denote either function or combinator:

�:� ⟶ �					�: � ⟶ �
� ∘ �:� ⟶ � (�����������)

Linear combinator composition expresses composition of functions α and β.

�:� ⟶ �					�: � ⟶ �
� ⊗ �:� ⊗ � ⟶ � ⊗ � (� �!"��)

Linear combinator product expresses tensor product between α and β, and the

result is a tensor product of corresponding types.

�:� ⊗ �	 ⟶ �
Λ(�):� ⟶ (� ⊸ �)

(#$�� #�����)

Linear combinator abstraction expresses a map from the argument σ on the

function type τ ⊸ θ.

In order to define equivalence between terms, we introduce relation of equivalence

of terms s ≡σ t. Equivalence means that terms will have the same value after the

evaluation, so for any functions f, g ∈term(σ ⊸ τ) and basic term x:σ hold

if evalσ,τ(f,x) ≡τ evalσ,τ(g,x), then f ≡σ g.

Properties of defined linear combinators are defined by the following axioms:

%!�	(�)	 ≡ �

(& ∘ 	�)(�) ≡ &(�(�))

#��'�,�,� 	(�, (�,"))

#�� �,�,� 	((�, �,)")

�(#��,�	(�, �)

��)��	(�)

�'��)�	((), �)

)*#'�,�	(+(�)(�), �)

≡
≡
≡
≡
≡
≡

(�, �),")

(�, (�,"))

(�,")

((), �)
�

�(�, �)

where s, t, u are terms with same types and variables, α, β, γ are combinators.

Free variables can be substituted by terms of same type in terms. Evaluation of

terms are gained by their substitution. If s is a linear term of type σ, s∈term(σ),

and x is a variable of type σ, x∈var(σ), then t[s/x] expresses linear term t, where

every free occurrence of variable x is substituted with a linear term s. Substitution

is defined as following:

E. Demeterová, D. Mihályi, V. Novitzká 34

	,	-[� .] = ,	-;										⁄ = ,	-;	
01� .⁄ 2 = 3�		�44	. = 0;

0		�44	. ≠ 0;

,�,"-1� .⁄ 2
�,�-1� .⁄ 2

=
=

,�[� .],"[� .]⁄⁄ -;

�(�[� .]);⁄

where t and u are linear terms of optional type, α is functional symbol or combina-

tor between linear types.

We call the expression t[s/x] linear term, if terms t and s do not have the same var-

iables.

2.2. Categorical model of linear type theory

As a basis for a categorical model of linear type theory we use symmetric

monoidal closed category [15, 16]. The reason for this choice was formulated by

the following facts:

• a type can be represented as an object in Cartesian closed category [2]. Symmet-

ric monoidal closed category is a generalization of it.

• For arbitrary monoidal closed category it exists a linear type theory [14, 17],

whose model is this category.

Terms can be represented by the categorical morphisms [18].

Symmetric monoidal closed category [17, 19] is defined by a sixtuple

(ℭ,⊗, %,#, ', �,5��(−, −)),

where

• ℭ is a category;

• ⊗ : ℭ x ℭ → ℭ is a tensor product;

• I is the neutral element of the tensor product, it is an object in ℭ. This object

serves as terminal object of the category ℭ;

• aX,Y,Z:(X⊗Y)⊗ Z → X⊗ (Y⊗Z) is a natural isomorphism which expresses left

associativity of tensor product, X, Y, Z are objects in ℭ;

• l: I⊗X → X is a natural isomorphism expressing left neutral element of the ten-

sor product;

• cX,Y: X⊗Y → Y⊗X is a natural isomorphism expressing commutativity of the

tensor product;

• for every object X in ℭ the functor ─⊗X has a right adjoint Hom-functor Hom

(X,─) with natural transformations

εX,Y : Hom(X,Y) ⊗ X →Y

δX,Y : X → Hom(Y, X⊗Y).

Now we construct symmetric monoidal closed category ℭ as a model of linear

type theory. Category objects of the ℭ are type contexts Γ, ∆,..., which can be real-

ized as finite products of types

A categorical model of predicate linear logic 35

σ1⊗ ... ⊗ σn.

Morphisms in ℭ are linear terms x1:σ1,..., xn: σn ⊢ t:τ expressed as morphisms:

σ1⊗ ... ⊗ σn

�→τ;

In order to express the semantics of linear type theory we have to define inter-

pretation functions for objects and morphisms. The interpretation function for the

objects is

i:	7→	ℭobj

and it assigns an object in ℭobj to every type from 7 as follows:

�,�- = 8�9	
�,%- = 8%9

�,� ⊗ �- = 8�9 ⊗ 8�9	
�,� ⊸ �- = 5��(8�9, 8�9)

The interpretation function for morphism

j:	7erm→	ℭmorp

assigns a morphism in ℭ morp for every typed linear term from a set 7erm.

:: � ⊢ t: σ ⟶ 8�9: 8σ9 	⟶ 8�9

Combinators of linear type theory are interpreted in ℭ as follows:
 :(%!�) = �!���

:(#�� �,�,�) = #���,���,���
:(#��'�,�,�)

:(�(#��,�)

:(��)��)

:(�'��)�)

:()*#'�,�)

=
=
=
=
=

#���,���,�����

����,���
'���
'�����;���,���

We denote the composition of combinators α and β, where α: σ →

τ and

β: τ → θ, as β∘α. We interpret that as a composition of morphism in category ℭ

j(β∘α) = j(β) ∘ :(α)

The semantics of the linear type theory is a pair of functions

(i,j).

3. Multiplicative fragment of predicate linear logic

After defining linear type theory we can introduce predicate linear logic.

We use only multiplicative fragment of linear logic that can be modelled in sym-

metric monoidal closed category. The multiplicative fragment of predicate linear

E. Demeterová, D. Mihályi, V. Novitzká 36

logic [7] contains the multiplicative connectives with their neutral elements from

the propositional linear logic. A linear formula φ has a form defined by the follow-

ing BNF rule:

φ ::= p | 1 | ⊥ | φ⊗φ | φ℘φ | φ⊸	φ | φ⊥
| !φ | ?φ | P(t1,…,tn) | ∀x φ| ∃x φ,

where:

• formula P(t1,…,tn) is a predicate expressing relations between terms (t1,…,tn);

• formula ∀x φ expresses universal quantifier applied on the formula and ∃x φ

expresses existential quantifier applied on the formula. Quantifiers bind occur-

rence of variables.

In accordance to arity we can distinguish predicate symbols as:

• unary P(t) which expresses some property of a term t;

• binary P(t1,t2) which expresses some binary relation between terms t1 and t2;

• n-ary P(t1,…,tn) which expresses n-ary relation between terms (t1,…,tn).

Quantifiers have the same meaning as in the predicate logic and De Morgan's

rules are valid:

(∀<	=)� ≡ ∃<	=�
(∃<	=)� ≡ ∀<	=� (30)

De Morgan's rules are also valid for predicates:

(>(?))� ≡ >�(?)

(>�(?))� ≡ >(?)
 (31)

Because we added new forms for the formulae, we have to extend deduction sys-

tem with new deduction rules. For the quantifiers we have the following deduction

rules:

�,�[� �⁄]⊢�	

�,(∀�)�⊢�	
(∀<) (32)

�⊢�,�		

�⊢(∀�)�,�	
(∀<
) (33)

�,�⊢�		

�,(∃�)�⊢�		
(∃<) (34)

	�⊢��� �⁄ �,�			

�⊢�∃���,�			
(∃<�) (35)

where Γ is a finite sequence of linear formulae φ1,…, φn and in the rules ∀xL and

∃xR x have no free occurrence in Γ and ∆. These rules express how to introduce the

universal and the existential quantifier into formula φ.

4. Categorical model of multiplicative fragment of predicate linear logic

In the previous section we constructed the semantics of linear type theory as

symmetric monoidal closed category. Next we construct a categorical model of the

multiplicative fragment of predicate linear logic using the symmetric monoidal

closed category, defined in previous sections.

A categorical model of predicate linear logic 37

Any elementary sentence is interpreted as an object, basic type in category ℭ.

Neutral element

1	 ≡ %

is interpreted as terminal object I of the category ℭ. The neutral element ⊥ is dual

to 1

1� 	≡	⊥ ,

therefore from the properties of category ⊥ is interpreted as initial object of ℭ.

For the interpretation of negation we use the following equivalence:

8@�9 	≡ 	 8@ ⊸	⊥9

According to [20] we interpret every sequent

φ1,…,φn ⊢ ψ

as morphism

8@�9 ⊗ ⋯ ⊗ 8@�9 	⟶ 8A9

in ℭ, where 8@9	expresses object, a representation of the formulae φ in ℭ.

Connectives are interpreted as morphisms in category ℭ as follows:

8@9 ⊗ 8A9 ⟶ 8@ ⊗ A9
8@9℘8A9 ⟶ 8@℘A9
8@9 ⊸ 8A9 ⟶ 8A 9

Because the symmetric monoidal closed category is Cartesian closed category, the

existence of objects 8@ ⊗ A9, 8@℘A9	and exponential object 8A 9 arises from its

properties [19].

Now we define interpretation of unary predicate P(t). A predicate P(t) is

a property of the value of a term t of type σ. Because 8�9 is an object in ℭ, the

interpretation of the predicate P(t)

8B(�)9 ⊆ 	 8�9

is a subset of the object 8�9 in the ℭ.

We define functors and adjoint functors in order to express the semantics of the

modal operator of course !, the existential and universal quantifiers.

A functor is morphism between categories. A functor F: ℭ ⟶ 	C is a pair of

functions (F0,F1) [17]

D!: ℭ"#$	 ⟶ C"#$
D�: ℭ%"&' ⟶ C%"&',

E. Demeterová, D. Mihályi, V. Novitzká 38

for which holds:

• if f : A → B is morphism in ℭ then F1(f) : F0(A) → F0(B) in C;

• for any object A in ℭ holds F1(idA}) = idF0(A) ;

• if the composition g	∘	f is in ℭ then the composition F1(g)	∘ F1(f) is defined in C

and holds F1(g	∘f) = F1(g)	∘ F1(f).

A functor D: ℭ ⟶ 	ℭ is called endofunctor over category ℭ. We define adjoint

endofunctors over category ℭ.

Let D: ℭ ⟶ 	ℭ and E: ℭ ⟶ 	ℭ be endofunctors [17] and Id be identity functor. We

say that:

• F is a left adjoint to the endofunctor G, F ⊣ G and

• G is a right adjoint to the endofunctor F, G ⊢ F

if there is a natural transformation

η:Id →G	∘ F

such that for any objects A, B in ℭ and any morphism f: A → G(B) it exists unique

morphism

g: F(A) → B

in ℭ, for which holds

f = G(F) ∘ ηA.

Adjunction means that there exact correspondence exists between morphisms

A → G(B) and B → F(A), i.e. the Homsets

 GHI,J,K-,L- ≅ GHI(K,M,L-) (36)

are isomorphic. Adjunction can be illustrated also by the following commuting

diagram.

The property (36) is useful in defining semantics of modal operator of course !

as follows. Let F and G be a pair of adjoint endofunctors

F ⊣ G

in ℭ. We define this modal operator as a composition

8!9:	E ∘ D

A categorical model of predicate linear logic 39

such that for any object ���

���������� � �! ��

it returns an object isomorphic with ���, i.e. we can model unexhaustible resource
��� by composition of adjoint functors as it is illustrated in Figure 1.

To interpret quantifiers we use adjoint functors, too.

Fig. 1. Model of predicate linear logic

Let �
���� ⊆ �
� be an interpretation of the unary predicate symbol, where �
�

is an object in �. We consider a variable y:τ and we construct a predicate P(t,y)

interpreted as

�
��, ��� ⊆ �
� � ���,

where y has no free occurrence in t. We construct an auxiliary endofunctor H as

follows:

H: ���
�� 	⟶ ���
� � ����,

where ���
�) is a power set over �
�.
Now we define a left adjoint functor of H that is interpretation of existential

quantifier ∃

�∃� ⊣ H

as

�∃�: ���
� � ���� ⟶ ���
��,

E. Demeterová, D. Mihályi, V. Novitzká 40

that for quantified formula ∃y.P(t,y) returns a value of type τ (if it exists) satisfying

predicate P(t,y):

8∃0.B(�,0)9 = N8�9 ∈ 8�9|	 exists a value in 8�9 ⊨ 8B(�,0)9}.

Because of duality between existential and universal quantifiers in (31), we

interpret universal quantifier as a right adjoint to the auxiliary functor H

H ⊣ ⟦∀⟧.

Interpretation of quantifiers by adjoint functors is illustrated in the Figure 1.

In the following text we explain how deduction and proofs can be interpreted by

morphisms in our model.

The identity rule

	
@ ⊢ @ (id)

is interpreted as identical morphism:

�!�(�:	8φ9 ⟶ 8φ9.

The proofs
�)
⋮

�⊢�,�

�*
⋮

�+⊢�,�+

are interpreted as morphisms

4: 8O9 ⟶ 8@&Δ9 F: 8O′9 ⟶ 8A&Δ′9

in category ℭ. The proof of the multiplicative conjunction
 ��

⋮O ⊢ @, Δ

�,
⋮O� ⊢ A, Δ′	

O,O� ⊢ @ ⊗ A, Δ	, Δ′
(⊗-)

is interpreted as morphism

8O9 ⊗ 8O′9 															.⊗/											PQQQQQQQQQQQR	8@ ⊗ A&S&S′9	

in category ℭ.

Our model of predicate linear logic is constructed as a symmetrical monoidal

closed category of types together with appropriate adjoint functors for modal oper-

ator and quantifiers. A proof of a formula is modeled as a finite path of category

morphism.

A categorical model of predicate linear logic 41

Conclusions

Linear logic has many important properties useful for describing and verifying

various program systems. Its dynamic nature, expressing causality, non

determinism and handling resources make it the most appropriate logical system

for computer science. In this paper we defined predicate linear logic, its deduction

system and we constructed categorical model based on symmetric monoidal closed

category. This category with types as objects enables direct connection with

computing, where types and typed data structures play an important role.

Categories provide many useful structures that we can also use in constructing

models of logical systems. In this paper we used special properties of adjunct

endofunctors for modeling the modal operators expressing non exhaustibility of

resources and for modeling quantifiers. The model of predicate linear logic defined

in this paper will serve for our further research, either for specifying contracts and

dependencies between components in modeling component based systems, or in

modeling observable behavior of such systems on the base of coalgebras.

Acknowledgment

This work has been supported by APVV-0008 0 Grant: Modelling, simulation

and implementation of GPGPU-enabled architectures of high-throughput network

security tools.

References

[1] Girard J.-Y., Linear logic, Theoretical Computer Science 1987, 50, 1-102.

[2] Novitzká V., Mihályi D., Slodičák V., Categorical models of logical systems in the mathematical

theory of programming, P. U. M. A 2006, 17, 3-4, 367-378.

[3] Novitzká V., Mihályi D., Resource-oriented programming based on linear logic, Acta

Polytechnica Hungarica 2007, 4(2), 157-166.

[4] Mihályi D., Novitzká V., Prazňák P., Popovec P., Network routing modelled by game semantics,

Studia Universitatis Babes-Bolyai, Informatica 2012, 57, 4, 19-29.

[5] Mihályi D., Novitzká V., Towards the knowledge in coalgebraic model of IDS, Computing and

Informatics 2014, 33, 1, 61-78.

[6] Steingartner W., Novitzká V., Benčková M., Prazňák P., Considerations and ideas in component

programming - towards to formal specification, Proc. of 25th Central European Conference on

Information and Intelligent Systems CECIIS, Varaždin, Sept. 17-19, 2014, 332-339.

[7] Mihályi D., Novitzká V., What about linear logic in computer science? Department of

Computers and Informatics, Technical University of Košice, Acta Polytechnica Hungarica 2013,

10, 4.

[8] Lincoln P., Linear Logic, SRI and Stanford University, 1992.

[9] Novitzká V., Mihályi D., Slodičák V., Linear logical reasoning on programming, Acta

Electrotechnica et Informatica 2006, 3, 6.

[10] Girard J.-Y., Linear Logic: Its Syntax and Semantics, Cambridge University Press, 2003.

E. Demeterová, D. Mihályi, V. Novitzká 42

[11] Yetter D.N., Quantales and (noncommutative) linear logic, Journal of Symbolic Logic 1990,

55(1), 41-64.

[12] Girard J.-Y., Taylor P., Lafont Y., Proofs and Types, Cambridge University Press, New York

1989.

[13] Girard J.-Y., On the Meaning of Logical Rules I: Syntax vs. Semantics, Institut de

Mathematiques de Luminy, UPR 9016- CNRS 163, Avenue de Luminy, Case 930, F-13288

Marseille Cedex 09, 1998.

[14] Ambler S.J., First order linear logic in symmetric monoidal closed categories, PhD. Thesis,

University of Edinburgh, 1991.

[15] Abramsky S., Computational interpretations of linear logic, Technical Report 90/20, Department

of Computing, Imperial College, 1990, 1-15.

[16] Hasegawa M., Categorical Glueing and Logical Predicates for Models of Linear Logic, Kyoto

University, Research Institute for Mathematical Sciences, 1999

[17] Novitzká V., Slodičák V., Kategorické štruktúry a ich aplikácie v informatike 2010, ISBN 978-

80-89284-67-2.

[18] de Paiva V., Categorical Semantics of Linear Logic for All, Palo Alto Research Center, Palo Alto

2006.

[19] Barr M., Wells Ch., Category Theory for Computing Science, Prentice Hall International Ltd.,

Hertfordshire 1990.

[20] Melliès P.-A., Categorical Semantics of Linear Logic, Panoramas et Syntheses 27, Citeseer,

2009.

[21] Mihályi D., Novitzká V., Ľaľová M., Intrusion detection system episteme, Central European

Journal of Computer Science 2012, 2, 3, 214-220.

[22] Slodičák V., Some Useful Structures for Categorical Approach for Program Behavior, Journal of

Information and Organizational Sciences 2011, 35, 1, 99-109.

