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Abstract. We apply the Fibre Bundle Model to study critical loads and catastrophic ava-

lanches in arrays of axially loaded nanopillars under so-called local load sharing. Nanopil-

lars with assigned random strength-thresholds are located in the nodes of the supporting 

square lattice. We analyzed different mixtures of weak and strong pillars, i.e. we use distri-

butions of strength-thresholds drawn from two different uniform distributions. 
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Introduction 

Failure of materials is a highly undesirable phenomenon whose dynamics attract 

much scientific attention, especially fractures and damages in heterogeneous mate-

rials. It is because of a broad area of technological applications of heterogeneous 

materials [1-3]. Due to complex relations between failures and subsequent stress 

transfer, the prediction of a sudden catastrophic failure is a serious problem for 

both the engineers and physicists. Several statistical models have been proposed to 

describe fracture processes in heterogeneous media. A very important class of these 

models are the Fibre Bundle Models (FBM) [3-5]. Despite their simplicity they 

capture the most important properties of material damage and breakdown. In the 

literature different realizations of the FBM [5-8] are proposed including the mixed 

models [9, 10].  

In this paper we simulate the breakdown in arrays of weak and strong nanopil-

lars assembled perpendicularly to a flat substrate [11]. Such arrays of nanopillars 

can be used as components in the systems of micromechanical sensors or in solar 

cells [12, 13]. In [14] Ryu et al. have introduced model of fracture of silicon nano-

pillar arrays. Free-standing nanopillars can also be applied as elements in the  

micro- and nano-electromechanical systems, micro-actuators or optoelectronic  

devices [15, 16]. The experimental tensile and compressive tests performed on  
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single metallic micro- and  nanopillars indicated significant strength increase via 

size reduction of the sample [15]. For this reason it is worth analysing mechanical 

destruction within an array of nano-sized pillars.    

1. Model of a mixed nanopillar array  

The system under consideration is composed of LLN ×=  longitudinal nanopil-

lars located in the nodes of the square lattice of side length .L  Each nanopillar is 

characterised by its own critical load 
i

th
σ  to an applied axial load. In this sense i

th
σ  

is a strength-threshold of a given pillar. Pillar-strength-thresholds are uniformly 

distributed quenched random variables. It is assumed that the randomness of pillar-

strength-thresholds i

th
σ , Ni ,..,2,1=  reflects the disorder of heterogeneous materi-

al. In the present study we employ a mixed scheme: part of the pillar-strength-

thresholds is drawn from the interval (0,0.5) and the rest is randomized from the  

interval (0.5,1). This ensures that each pillar with a strength-threshold drawn from 

the first interval is weaker than any pillar with a strength-threshold drawn from the 

second interval, therefore the first we call a weak pillar and the other - a strong pil-

lar. We analyse five different arrangements (see Fig. 1): 

- Graysystem - pillars are grouped in pairs of neighbouring elements.  

A weak pillar corresponds to 0 and a strong pillar corresponds to 1 in 2-bit Gray 

code, 

- row system - rows of weak and strong pillars are arranged alternately, 

- block system - weak and strong pillars are grouped in blocks 22× , 

- diagonal system - weak and strong pillars are arranged alternately on the  

diagonals, 

- random system - weak and strong nanopillars are randomly placed (not  

included in Figure 1). 

 

Fig. 1. Arrangements of weak (gray circles) and strong (black circles) nanopillars (from 

the left to the right): Gray system, row system, block system, diagonal system 

The set of pillars is subjected to a quasi-statically increased external load F . At 

the beginning of the loading process all the nanopillars are intact and the external 

load .0=F  The idea of quasi-static loading means that the external load is uni-

formly increased on all intact pillars until the destruction of one intact pillar under 
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the load 
i
σ  exceeding strength-threshold 

i

th
σ  of this pillar. After this destruction 

which is instantaneous and irreversible, the increase of the external load stops and 

the load coming from the damaged pillar is transferred to other intact pillars  

according to a given load transfer rule. 

Several load transfer rules have been proposed, but the most commonly investi-

gated are two extreme schemes: global load sharing (GLS) and local load sharing 

(LLS). The GLS rule represents the mean-field approach - the load coming from 

the destroyed pillar is equally redistributed to all intact pillars, therefore long-range 

interactions are assumed in the GLS rule. While, for the LLS rule only short-range 

interactions are observed - the load coming from the broken pillar is transferred to 

the nearest intact neighbours. Load transfer is not homogenous in that case and  

regions of stress concentration appear throughout the system. In the present paper 

we focus mainly on the LLS rule because for the GLS rule the arrangement of pil-

lars is negligible. The results obtained for the GLS rule would be the same as for 

the systems with the pillar-strength-thresholds drawn uniformly from the interval 

(0,1). In the following part of the work, the systems with pillar-strength-thresholds 

randomly chosen from the interval (0,1) are called standard GLS and standard LLS, 

in dependence of applied load transfer rule. 

Load redistribution increases stress on an intact pillar - it may cause further 

failures and then subsequent load transfers followed by possible failures. If the load 

transfer does not provoke failures a stable state appears. In this situation the exter-

nal load F  has to be increased on the intact pillars in the same way as at the  

beginning of the loading process i.e. until damage of the weakest pillar. The load-

ing process is continued until the whole nanopillar array collapses.  

2. Analysis of the simulation results  

We have performed computer simulations of the damage process in the quasi-

statically loaded mixed nanopillar arrays. In order to obtain reliable statistics, the 

calculations have been carried out for many samples. It should be noted that if it is 

not specified, we apply the LLS rule. 

Damage process in the quasi-statically loaded nanopillar arrays proceeds as  

a sequence of simultaneous pillar crashes. This cascade of failures resembles sand 

or snow movement [17] and hence the number of destroyed pillars under an equal 

external load F  is called an avalanche and is denoted by ∆ . Each avalanche is ini-

tiated by an external load increase.  

From the viewpoint of predicting a complete system breakdown two quantities 

are significant: critical load 
c
F  preceding complete failure and catastrophic (criti-

cal) avalanche 
c
∆  induced by exceeding of 

c
F . We analyse simulation results for 

these two quantities, which in fact are random variables. In order to compare  

results for different system sizes 
c
F  and 

c
∆  should be scaled by the appropriate in-

itial system size NF
cc
/=σ  and ./ N

c
∆  
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Fig. 2. The mean critical load 
c
σ  versus the linear array’s size NL =  for different 

configurations: random system (circles), Gray system (squares), row system (diamonds), 

block system (up triangles), diagonal system (down triangles). The averages are taken 

over at least 500 samples for each presented value 

Figure 2 illustrates mean critical loads for different arrangements. It is seen that 

the arrangement of strong and weak pillars has a considerable influence on system 

strength. However with increasing system size the mean critical load 
c
σ   

decreases, but the ordering of 
c
σ  for different system arrangements is preserved. 

This ordering can be explained by the neighbourhood rules. In the diagonal system 

each weak (strong) pillar has four strong (weak) nearest neighbours. In the row and 

block systems each strong (weak) pillar is surrounded by two strong and two weak 

nearest neighbours, but if the next-nearest neighbours are analysed, the differences 

appear (see Fig. 1). In the case of the Gray system two types of neighbourhood are 

visible - weak (strong) pillar is surrounded by a) two weak and two strong nearest 

neighbours, b) three weak (strong) and one strong (weak) nearest neighbours. All 

of the above discussed neighbourhoods do not concern boundary pillars. 

The mean critical load for the standard GLS system asymptotically tends to 

25.0  according to formula: 

 3

2

30597.025.0
−

+= N
c
σ  (1) 

From Figure 2 it can be noticed that the diagonal system supports greater loads 

than the standard GLS system. The other analysed systems are definitely weaker 

having  0.23
c
σ < .  

The next investigated quantity is the catastrophic avalanche size. It is seen in 

Figure 3 that in the case of scaled sizes of catastrophic avalanche, the ordering vis-

ible in Figure 2 is reversed - the bigger the 
c
σ , the smaller the critical avalanche. 

For the standard GLS systems, the scaled catastrophic avalanche asymptotically 

tends to 5.0  in accordance with: 
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2

4.05.0
−

+=
∆

N
N

c

 (2) 

   

Fig. 3. The mean scaled size of the catastrophic avalanche vs. the linear array’s size 

NL =  for different configurations: random system (circles), Gray system (squares), 

row system (diamonds), block system (up triangles), diagonal system (down triangles). 

The averages are taken over at least 500 samples for each presented value 

In our analysed system 66.0/ >∆ N
c

, meaning that the system will be com-

pletely destroyed if at most 3/1  pillars in the array is broken.  

In order to get a closer look at the results for the diagonal system we have per-

formed simulations for system sizes 128128×>N . To avoid the boundary effects 

calculations have also been done for the diagonal systems with periodic boundary 

conditions (PBC). The results of 
c
σ  and N

c
/∆  are graphically reported in 

Figures 4 and 5.  
 

 

Fig. 4. The mean critical load 
c
σ  versus the linear array’s size NL =  for: diagonal 

systems without PBC (squares), diagonal systems with PBC (circles), standard GLS sys-

tems (diamonds) 
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Fig. 5. The mean scaled size of the catastrophic avalanche vs. the linear array’s size 

NL =  for diagonal systems: without PBC (squares), with PBC(circles)  

For the standard LLS system the mean values of 
c
σ  can be nicely fitted by the 

formula [18]: 

 ( )
δ

λ
σ

)(ln

1

N
N

c
=  (3) 

with coefficients 2.413λ =  and 414.0=δ . This formula is a good approximation 

for the diagonal system. Based on numerical results we have obtained 2.721pbcλ = , 

0.165pbcδ =  and 760.2=npbcλ , 160.0=npbcδ for the systems with and without 

PBC, respectively. Absolute percentage errors of these approximations are smaller 

than %14.0 . For diagonal systems 
c
σ  can also be approximated by the following 

equation: 

 ( ) ξυτ ++=

NN
Nt

ln

1

ln

1

2
 (4) 

with 1.035pbcτ = − , 0.613 =pbcυ , 0.200 =pbcξ  and 1 022npbc .τ = − , 0.598 =npbcυ , 

0.201 =npbcξ . Absolute percentage errors of these approximations are smaller than 

%21.0 . Figure 6 presents approximation errors for the diagonal system with PBC. 

It should be noticed that the relation (3) asymptotically tends to 0, while  

( ) 2.0lim =
→∞

Nt
n

 in the case of the above coefficient values. 

As previously mentioned, the diagonal system is the only one analysed here for 

which 
cGLScDLLS
σσ >  (see Fig. 4). However, function ( )N

cDLLS
σ  decreases 

more quickly than ( )N
cGLS
σ  and therefore for sufficiently large systems 
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cDLLScGLS
σσ > . We have found intersection points for these two curves 

cGLS
σ  and 

cDLLS
σ  : 155≈N (without PBC), 170≈N (with PBC). 

 

It is interesting that formula (4) can be used as a scaling relation also for  

N
c
/∆  [18, 19] where 0.894 =pbcτ , 0.771pbcυ = − , 0.773 =pbcξ  and 1.286 =npbcτ , 

 0 834npbc .υ = − , 0.776 =npbcξ for diagonal systems with PBC and without PBC, 

respectively. Absolute percentage errors of these approximations do not exceed 

%12.0 . 

 

 

Fig. 6. Percentage errors of 
c
σ  approximation using: formula (3) - squares, formula (4) 

- circles. The results concern diagonal systems with PBC 

In the last part of the chapter we study the distribution of critical load values 

and catastrophic avalanche sizes for diagonal systems with PBC. Exemplary empir-

ical probability density functions of these two quantities have been shown in  

Figures 7 and 9. Critical load 
c
σ  is a continuous random variable which follows 

three-parameter skew normal distribution (see Fig. 7) being a generalization of 

Gaussian distribution for non-zero skewness [20]. The distribution of 
c
σ  is charac-

terised by negative skewness for all analysed system sizes (from 
2
16=N to 

2
512=N ).  

Concerning prediction of a system failure, it is important to know the probabil-

ity of the system destruction under a given load. In that situation it is convenient to 

work with the complement of the cumulative distribution function namely the sur-

vival function ( ) ( )
cc
σσ cdf1sf −= . This function gives a probability that the sys-

tem is working under load 
c
σ . Chosen empirical survival functions are illustrated 

in Figure 8 and it is seen that the bigger the system, the smaller the probability that 

it supports a given load 
c
σ . 
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Fig. 7. Probability density function of the 
c
σ in an array with 112112×  pillars obtained 

from 30 000 samples. Here the results for the diagonal system with PBC are shown and 

the solid line represents skew-normally distributed 
c
σ  with parameters computed from 

these samples 

 

Fig. 8. The empirical survival functions (sf) of critical load 
c
σ in an arrays of  3232×

(grey line), 6464× (dashed line), 128128×  (black line) nanopillars. Each survival func-

tion was built on at least 30 000 independent configurations of diagonal system with PBC  

Although critical avalanche size 
c

∆  is a discrete random variable and skew 

normal distribution is a continuous probability distribution, we have approximated 

c
∆  by this distribution (see Fig. 9). We have performed Cramer-von Mises and 

Anderson-Darling tests. The hypothesis that 
c

∆  follows a skew normal distribution 

was not rejected at the 5% significance level for systems with 
2

64≥N pillars.  The 
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hypothesis was rejected for smaller system sizes, namely { }222
48,32,24∈N . The 

distribution of 
c

∆  is characterised by positive skewness for systems with sizes 

2
24≥N  pillars. To gain a more complete insight into the distribution of 

c
∆   the 

results for different system sizes have been shown in Figure 10. 

 

 

Fig. 9. Probability density function of the 
c
∆ in an array with 112112×  pillars obtained 

from 30 000 samples. Here the results for the diagonal system with PBC are shown and 

the solid line represents skew-normally distributed 
c
∆  with parameters computed from 

these samples 

 

Fig. 10. The empirical cumulative distribution functions of the scaled critical avalanche 

N
c
/∆ in an arrays of 3232× (grey line), 6464× (dashed line), 128128×  (black line) 

nanopillars. Each cdf was built on at least 30 000 independent configurations of a diago-

nal system with PBC  
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Conclusion 

We have studied critical loads and catastrophic avalanches in arrays of weak 

and strong nanopillars. The pillars were quasi-statically loaded and we applied 

a local load sharing rule after each pillar breakdown. 

Based on simulation results, we have noticed ordering of critical loads and cata-

strophic avalanche sizes according to an arrangement of weak and strong pillars. 

The strongest analysed system is the diagonal one. For this system we have fitted 

mean critical loads and mean catastrophic avalanche size by formulas (3) and (4). It 

has been shown that critical load and catastrophic avalanche size distributions are 

well approximated by skew normal distributions. 
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