
Journal of Applied Mathematics and Computational Mechanics 2015, 14(1), 101-109 

www.amcm.pcz.pl p-ISSN 2299-9965 

 DOI: 10.17512/jamcm.2015.1.10 e-ISSN 2353-0588 

ON K-SUPERQUADRATIC SET-VALUED FUNCTIONS 

Katarzyna Troczka-Pawelec 

Institute of Mathematics, Częstochowa Jan Długosz University  
 Częstochowa, Poland 
k.troczka@ajd.czest.pl 

Abstract. In this paper we consider K-superquadratic set-valued functions. We will present 

here some connections between K-boundedness of K-superquadratic set-valued functions 

and K-semicontinuity of multifunctions of this kind. 
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Introduction 

Let ( , )X X= + be an arbitrary topological group. A real-valued function f is 

called superquadratic if it fulfils inequality 

2 ( ) 2 ( ) ( ) ( ),f x f y f x y f x y+ ≤ + + −          , .x y X∈                    (1) 

If the sign ≤  in (1) is replaced by ≥ , then f is called subquadratic. The continu-

ity problem of functions of this kind was considered in [1]. This problem was also 

considered in the class of set-valued functions. By the set-valued functions we  

understand functions of the type : 2 ,
Y

F X →  where X and Y  are given sets. 

Throughout this paper set-valued functions will be always denoted by capital  

letters.  

A set-valued function F is called subquadratic if it satisfies  inclusion  

                 ( ) ( ) 2 ( ) 2 ( ),F x y F x y F x F y+ + − ⊂ +         ,x y X∈                    (2) 

and superquadratic, if it satisfies inclusion defined in this form 

2 ( ) 2 ( ) ( ) ( ),F x F y F x y F x y+ ⊂ + + −         , .x y X∈                   (3) 

For single-valued real functions properties of subquadratic and superquadratic 

functions are quite analogous and, in view of the fact that if a function f  is 

subquadratic, then the function f−  is superquadratic and conversely, it is not  
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necessary to investigate functions of these two kinds individually. In the case of 

set-valued functions the situation is different. Even if properties of subquadratic 

and superquadratic set-valued functions are similar, we have to prove them sepa-

rately.  

If the sign ⊂  in the inclusions above is replaced by =, then F is called quadrat-

ic set-valued function. The class of quadratic set-valued functions is an important 

subclass of the class of subquadratic and superquadratic set-valued functions. 

Quadratic set-valued functions have already extensive bibliography (see Smajdor 

[2], Henney [3] and Nikodem [4]). 

The continuity problem of subquadratic and superquadratic set-valued functions 

was considered in [5] and [6]. 

Adding a cone K  in the space of values of a set-valued function F  lets us con-

sider a K-superquadratic set-valued function, that is, solution of the inclusion 

( ) ( ) 2 ( ) 2 ( ) ,F x y F x y F x F y K+ + − ⊂ + +          ,x y X∈           (4) 

where F is defined on 2-divisible topological group X with non-empty, compact 

and convex values in a locally convex topological vector space .Y  

The concept of K-superquadraticity is related to real-valued superquadratic 

functions. Note, in the case when F  is a single-valued real function and [0; )K = ∞

we obtain the standard definition of superquadratic functionals (1). 

If a set-valued function F  satisfies the following inclusion 

                  2 ( ) 2 ( ) ( ) ( ) ,F x F y F x y F x y K+ ⊂ + + − +           ,x y X∈          (5) 

then is called K-subquadratic. The K-continuity problem of multifunction of this 

kind was considered in [7] and [8]. It was proved that a K-subquadratic set-valued 

function, which is K-continuous at zero, (0) {0}F =  and locally K-bounded in X  

is K-continuous every where in .X  

In this paper we will consider similar problem for K-superquadratic set-valued 

functions. Likewise as in functional analysis we can look for connections between 

K-boundedness and K-semicontinuity of set-valued functions of this kind. Assum-

ing {0}K =  in (4) and (5) we obtain the inclusions (2) and (3). 

 

Let us start with the notations used in this paper. Let Y  be a topological vector 

space. We consider the family ( )n Y of all non-empty subsets of Y  as a topological 

space with the Hausdorff topology. In this topology the set 

( ) : { ( ) : , }
W

N A B n Y A B W B A W= ∈ ⊂ + ⊂ +  

where W  runs the base of neighbourhoods of zero in ,Y  form a base of neigh-

bourhoods of a set ( ).A n Y∈ By ( )cc Y we denote the family of all compact and 

convex members of ( ).n Y The term set-valued function will be abbreviated to the 

form s.v.f. 
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Now we present here some definitions  for the sake of completeness. 

Recall that a set K Y⊂ is called a cone if K K K+ ⊂  and sK K⊂ for all 

(0; ).s∈ ∞  

 

Definition 1.1 

A cone K  in a topological vector space Y is said to be a normal cone if there 

exists a baseΛ of zero in Y such that 

( ) ( )W W K W K= + ∩ −  

for all W Λ∈ . 
 

Definition 1.2 

An s.v.f. : ( )F X n Y→  is said to be  K-upper semi-continuous (abbreviated  

K-u.s.c.) at 
0
x X∈  if for every neighbourhood V of zero in Y there exists  

a neighbourhood U of zero in X such that 

0
( ) ( )F x F x V K⊂ + +  

for every .

0
Uxx +∈  

 

Definition 1.3 

An s.v.f. : ( )F X n Y→  is said to be K-lower semi-continuous (abbreviated  

K-l.s.c.) at 
0
x X∈  if for every neighbourhood V  of zero in Y  there exists  

a neighbourhood U of zero in X such that 

0
( ) ( )F x F x V K⊂ + +  

for every 
0

.x x U∈ +  

 

Definition 1.4 

An s.v.f. : ( )F X n Y→  is said to be K-continuous at 
0
x X∈ if it is both  

K-u.s.c. and K-l.s.c. at 
0

.x X∈  It is said to be K-continuous if it is K-continuous at 

each point of .X  
 

Note that K-continuity of F  in the case where {0}K =  means its continuity 

with respect to the Hausdorff topology on ( ).n Y  

We will  frequently use the following  lemma. 
 

Lemma 1.1 ([7]) 

Let Y be a topological vector space and K  be a cone in .Y  Let , ,A B C  be non-

empty subsets of Y such that .A C B C K+ ⊂ + +  If B is convex and C  is bounded 

then .A B K⊂ +  
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The main result 

In the proof of the main theorem, which will be presented here, we will often 

use four known lemmas (see Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 

in [9]). The first lemma says that for a convex subset A  of an arbitrary real vector 

space Y the equality tAsAAts +=+ )(  holds for every 0, ≥ts  (or , 0s t ≤ ). The 

second lemma says that in a real vector space Y for two convex subsets ,A B the set 

A B+  is also convex. The next lemma says that if A Y⊂ is a closed set and B Y⊂

is a compact set, where Y denotes a real topological vector space, then the set 

A B+  is closed. For any sets ,A B Y⊂ where Y denotes the same space as above, 

the inclusion A B A B+ ⊂ +  holds and equality holds if and only if the set A B+ is 

closed. 
 

Note that for the cone K  the following remark holds. 
 

Remark 2.1 
Let Y  be a real topological vector space. If K is a closed  cone, then it is a cone 

with zero. 
 

Let us adopt the following three definitions which are natural extension of the 

concept of the lower and upper  boundedness for real-valued functions. 
 

Definition 2.1 

An s.v. function : ( )F X n Y→  is said to be K-lower bounded on a set A X⊂ if 

there exists a bounded set B Y⊂ such that ( )F x B K⊂ +  for all .x A∈  

 

Definition 2.2 

An s.v. function : ( )F X n Y→  is said to be K-upper bounded on a set XA⊂

if there exists a bounded set B Y⊂ such that ( )F x B K⊂ −  for all .x A∈  

 

Definition 2.3 

An s.v. function : ( )F X n Y→  is said to be locally K-lower (upper) bounded in 

X  if for every x X∈  there exists a neighbourhood 
x
U of zero in X such that F  is 

K-lower (upper) bounded on a set .

x
x U+  It is said to be locally K-bounded in X  

if it is both locally K-lower and locally K-upper bounded in .X  

 

Theorem 2.1 

Let X be a 2-divisible topological group, Y  locally convex topological real 

vector space and K Y⊂ a closed normal cone. If a K-superquadratic s.v.f. 

: ( )F X cc Y→  is K-u.s.c. at zero, (0) {0}F = and locally K- bounded in X then it 

is K-l.s.c. in .X  
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Proof:  
Suppose that F  is not K-l.s.c. at a point z X∈ i.e. there exists a neighbourhood 

V of zero in Y such that for every neighbourhood U of zero in ,X  we can find 

u
x X∈  for which 

  

Take a balanced convex neighbourhood W of zero in Y such that   

 

and 

 

Then also 

F ( z) ⊈F (z+ x
u
)+W+ K .                                  (6) 

We shall show by induction that 

 ( ) 2 (2 1) ( ) ( 2 ) 2
s s s s

u u
F z F x F z x W K+ − ⊄ + + +                        (7) 

for every neighbourhood U of zero in X  and 
0
: {0,1,2,3 }.s N∈ = …  For 0=k  

condition (7) holds with respect to (6). We assume that (7) holds for ks = and for 

every neighbourhood U of zero in .X  Let 1.s k= +  Putting y x= in (4) and using 

condition (0) {0}F = we have 

 

An easy induction shows 

F (2n

x ) ⊂4
n

F (x)+ K ,                                    (8) 

for x X∈ and for all positive integers .n  By K-superquadraticity of F  and  (8), we 

have  

F ( z+ 2
k+ 1

x
u
)+ F (z)=F (z+ 2

k
x
u
+ 2

k
x
u
)+ F ( z+ 2

k
x
u
−2

k
x
u
) ⊂

2F ( z+ 2
k
x
u
)+ 2F(2k

x
u
)+ K ⊂

2F( z+ 2
k

xu)+ 2
2k+ 1

F (x u)+ K.
    (9) 

In view of the fact that for any sets ,A B Y⊂ , A B A B+ ⊂ +  we get 

 

 

F ( z)⊈F (z+ x
u
)+ V + K.

W⊂V

F ( z+ x
u
)+W + K ⊂F (z+ x

u
)+ V+ K.

F (2x) ⊂4 F ( x )+ K .

F ( z+ 2
k

x
u
)+ 2

k

W + K+ K ⊂ F ( z+ 2
k

x
u
)+ 2

k

W + K
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and consequently 

F ( z+ 2
k

x u)+ 2
k

W + K+ K ⊂F ( z+ 2
k

x u)+ 2
k

W + K .          (10) 

By (7) and (10), we obtain  

F ( z)+ 2
k (2k−1)F (xu) ⊈F ( z+ 2

k

xu)+ 2
k

W + K+ K .          (11) 

Notice that for a cone K the equality KaK =  holds, for every ).;0( ∞∈a  Hence 

2F (z)+ 2
k+ 1 (2k−1)F ( xu) ⊈2F ( z+ 2

k

x u)+ 2
k+ 1

W+ K+ K .          (12) 

By (12) and Lemma 1.1 

 

 
 

In view of Remark 2.1 K is a cone with zero. Therefore, by above 

2F (z)+ 2
k+ 1 (2k−1)F ( x

u
)+ 2

2k+ 1
F ( x

u
)+ K ⊈

2 F ( z+ 2
k
xu )+ 2

k+ 1
W + K+ 2

2k+ 1
F (xu)+ K.

                 (13) 

In view of the fact that the sum of closed and compact sets is closed and for any 

sets YBA ⊂, , BABA +=+  in the case where BA+  is a closed set, we get 

2F (z+ 2
k

x
u
)+ 2

k+ 1

W + K+ 2
2k+ 1

F (x
u
)=

2F ( z+ 2
k

x
u
)+ 2

k+ 1

W+ K+ 2
2k+ 1

F (x
u
).                     (14) 

Since K  is a cone, by (9) we obtain 

2 F (z+ 2
k

x
u
)+ 2

k+ 1

W + K+ 2
2k+ 1

F (x
u
) ⊃

F ( z+ 2
k+ 1

x
u
)+ F ( z)+ 2

k+ 1

W + K .
                 (15) 

Since F  has closed values, we get 

F ( z)+ F ( z+ 2
k+ 1

x
u
)+ 2

k+ 1

W + K+ K⊂

F ( z+ 2
k+ 1

xu)+ F ( z)+ 2
k+ 1

W + K+ K.
                   (16) 

Consequently, using (13)-(16), we conclude 

 

 

2F (z)+ 2
k+ 1 (2k−1)F ( x

u
)+ 2

2k+ 1
F ( x

u
) ⊈

2F (z+ 2
k
xu)+ 2

k+ 1
W + K+ 2

2k+ 1
F (x u)+ K.

2 F (z)+ 2
k+ 1 (2k−1)F ( x

u
)+ 2

2k+ 1
F ( x

u
)+ K ⊈

F (z)+ F (z+ 2
k+ 1

x u)+ 2
k+ 1

W+ K+ K.
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By convexity of the sets ( ), ( )
u

F x F z  we obtain  

 

 

Therefore 

( ) 2 (2 1) ( ) ( 2 ) 2
s s s s

u u
F z F x F z x W K+ − ⊄ + + +  

for 1s k= + , so that (7) is generally valid for all integers 0.s ≥  

Since K is a normal cone, there exists a base Λof neighbourhoods of zero in Y

such that ( ) ( )M M K M K= + ∩ − for all .M Λ∈  We can choose 
1

W Λ∈  and 

balanced  neighbourhood 
2
W of zero in Y such that 

W
2
⊂W

1
⊂W.

 

Because .M Λ∈  is K-lower bounded on a neighbourhood of ,z  then there exists  

a neighbourhood 
0
U  of zero in X and bounded set 

1
B Y⊂  such that 

 

Since the set 
1

B  is bounded, there exists 
1
0λ > such that 

 

Therefore, from the above 

  

 

Because F  is K-upper bounded on a neighbourhood of ,z  then there exists  

a neighbourhood 
1
U  of zero in X and bounded set 

2
B Y⊂  such that 

 

Since the set 
2

B  is bounded, there exists 0
2
>λ such that 

 

Therefore, from the above 

    

F ( z)+ F ( z)+ 2
k+ 1(2k+ 1−1)F ( x

u
)+ K ⊈

F (z )+ F (z+ 2
k+ 1

xu)+ 2
k+ 1

W + K+ K.

F ( z+ t )⊂B
1
+ K , t∈U

0.

B
1
⊂

1

λ
1

W
2
.

F ( z+ t ) ⊂
1

 λ
1

W 2+ K , t∈U 0.

F ( z+ t ) ⊂B
2
−K , t∈U

1.

B2 ⊂

1

 λ
2

W 2 .

F ( z+ t ) ⊂
1

λ
2

W 2−K , t∈U 1.
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Let 
1 2

min{ , }.λ λ λ=  Since 
2

W  is balanced, we get 

                     
F ( z+ t ) ⊂

1

λ
W

2
+ K ⊂

1

λ
W

1
+ K , t∈U

0

                     
(17)

 

and 

F ( z+ t ) ⊂
1

λ
W

2
−K ⊂

1

λ
W

1
−K , t∈U

1
.
                     

(18)
 

By (17) and (18), we obtain 

F ( z+ t ) ⊂(
1

λ
W
1
+ K ) ∩(

1

λ
W
1
−K ), t∈U

0
∩U

1
.               (19) 

Because the set .M Λ∈ , we have 

 

  

and consequently the following inclusion holds 

F ( z+ t ) ⊂
1

 λ W
1
⊂
1

 λ W ,                                 (20)   

for every 
0 1

.t U U∈ ∩  

Let k N∈  be so large that 

2
k

>
3

λ
.
                                                        

(21)
 

Since F  is K-u.s.c. at zero and (0) {0}F =  there exists a neighbourhood 
2

U of  

zero in X such that 

U
2
⊂

1

2
k
(U

0
∩U

1
)
                                               

(22)
 

and 

 

F (t ) ⊂
1

λ 2
k(2k−1)

W + K , t∈U
2
.

  
(23)

 

There exists 
2u

x U∈  such that (7) holds. 

By (22) 

                                        
2
k
x
u
∈(U

0
∩U

1
)
                                                    (24) 

(
1

 λ W 1
+ K ) ∩(

1

 λ W 1
−K )=

1

 λ W 1
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and by (23) 

F ( x
u
) ⊂

1

 λ 2
k

(2
k

−1)
W + K.

                                      
(25)

 

Let )(),(),2(
uu

k
xFczFbxzFa ∈∈+∈ . By (20), (21), (24), (25), we obtain 

b+ 2
k (2k−1) c−a∈

1

 λ W +
1

 λ W + K+
1

 λ W⊂2
k

W + K.
 

Therefore 

b+ 2
k (2k−1) c∈F ( z+ 2

k
x
u
)+ 2

k
W + K.

 

We have proved that  

F ( z)+ 2
k (2k−1)F ( x

u
)⊂F (z+ 2

k
x
u
)+ 2

k
W + K ,

  

which contradicts (7).  

Conclusions 

This article is the introduction to the discussion on the K-continuity problem for 

K-superquadratic set-valued functions. In the theory of K-subquadratic and  

K-superquadratic set-valued functions an important role is played by theorems  

giving possibly weak conditions under which such multifunctions are K-con-

tinuous. In this paper we have presented some connections between K-bounde-

dness of K-superquadratic set-valued functions and K-semicontinuity of multifunc-

tions of this kind. 
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