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Abstract. In this work, the topological derivative for the Laplace equation is used to solve 

a design problem. This derivative describes the sensitivity of the problem when a small hole 

is formed at an arbitrary point of the domain. The goal of this work is to design topology 

of the domain when the Robin condition is imposed on the holes. Physically, the holes 

can be construed as cooling channels. For finding the solution of the governing equation 

the boundary element method is applied. The final part of the paper presents the design 

of the heat exchanger and results of computations. 
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1. Introduction 

The topological derivative was first introduced by Céa et al. (1974). This one 

gives the sensitivity of a cost function when the domain under consideration is 

perturbed by the insertion of a hole. In this way, wherever this sensitivity is low 

enough (or high enough), depending on the problem, material is progressively 

removed. The topological derivative is often used for solving the topology design 

of several engineering problems (for example, design of heat conductors or heat 

exchanger) [1-3]. In this paper, we adopt a new approach called the topological- 

-shape sensitivity method, which is based on classical shape sensitivity analysis. 

The topological-shape sensitivity method leads to a simple procedure to compute 

the topological derivative [1]. In this work, we firstly present a brief description of 

the topological derivative. Next, the problem is formulated and some details about 

the numerical method (BEM) are described. Finally, the design of a heat exchanger 

is shown. 
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2. A review of topological derivative 

In this work a topological derivative for the Laplace equation is applied. Let in 

the inside of the original domain Ω be formed a small hole of radius ε. The con-

cept of the topological derivative 
T

D
∗

 is based on establishing the sensitivity of 

a given cost function (total potential energy) when the size of this hole is changed. 

The local value of the 
T

D
∗  is obtained by [1-4] 
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where ( )ψ Ω  and ( )
ε

ψ Ω  are the cost functions calculated for the original Ω and 

the new domain 
ε
Ω , respectively, and ( )f ε  is a regularizing function. The inconven- 

ience of the definition (1) is the impossibility to determine a homeomorphism 

between domains with and without the hole. So, in [1] an alternative definition 

of the topological derivative called the topological-shape sensitivity method was 

proposed. The authors start from 
ε
Ω , where the hole already exists, causing a small 

perturbation on the radius of the hole δε  (see Fig. 1). 
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Fig. 1. Definition of the topological derivative: a) original concept, 

b), c) modified concept 

Equations (1) and (2) are equivalent. However, the computation of DT is far easier 

than 
T

D
∗  [1, 2]. 

3. Formulation of the problem 

In this paper the topological derivative is applied to a steady-state heat diffusion 

problem. The Laplace equation supplemented by the boundary conditions is taken 

into account [1, 4] 
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where x = (x
1
, x

2
) are the spatial coordinates, λ is the thermal conductivity, T

ε (x) is 

the temperature, ∂T
ε /∂n denotes the normal derivative, n = [cosα

1
, cosα

2
] is the 

normal outward vector, qb is the prescribed heat flux, α is the heat transfer coeffi-

cient and T
∞
 is the ambient temperature. On the holes H

ε
 the Robin boundary con-

dition is prescribed where α
ε
 and T ε

∞
 are the hole’s internal convection parameters. 

In this case, the final expression for the topological derivative using the total poten- 
 

tial energy as the cost function is the following: 

 
1
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2
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D x T T T
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Details of the calculation of DT are described in [1, 2]. 

It is important to mention that T is the solution of the original problem (without 

a hole). In this work, the boundary element method was used to ensure the numeri-

cal solution. 

4. Numerical methodology 

In order to obtain the temperature field in the domain considered the boundary 

element method is used. The boundary integral equation for the Laplace equation 

is the following [5, 6]: 

 :     ( ) ( )  ( ) ( , )d   = ( ) ( , )dB T q x T x T x q x
∗ ∗

Γ Γ

ξ∈Γ ξ ξ + ξ Γ ξ Γ∫ ∫  (5) 

where ( )B ξ  is the coefficient from the interval (0,1), ξ is the observation point, 

T(x) and ( ) ( )q x T x= −λ ⋅∇n  are the temperature and the heat flux on the boundary 

Γ, respectively. For the problem considered, the functions T
∗

 and q
∗

 resulting from 

the fundamental solution are the following 
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where r denotes the distance between ξ = (ξ
1
, ξ

2
) and x = (x

1
, x

2
) 

 2 2

1 1 2 2
( ) ( )r x x= − ξ + − ξ  (7) 

while 

 
1 1 2 2

( ) ( )
x y

d x n x n= − ξ + − ξ  (8) 

nx, ny are the directional cosines of the normal outward vector n. 

In order to solve equation (5) the boundary is divided into N linear boundary 

elements. The integrals in equation (5) are substituted by the sums of integrals over 

these elements 
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Next, one obtains the following system of algebraic equations 
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This system of equations can be written in the form 

 =Gq HT  (11) 

Taking into account the known boundary conditions, equation (11) can be reor-

dered 

 =AX B  (12) 

where A is the main matrix, X is the unknown vector and B is the free terms vec-

tor.  Solving equation (12), all the boundary variables are known. 

The temperature in the interior nodes can be calculated using the following formula 

 :        ( ) = ( ) ( , ) d  ( ) ( , )dT T x q x q x T x
∗ ∗
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ξ∈Ω ξ ξ Γ − ξ Γ∫ ∫  (13) 
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Details about the BEM can be found in [5, 6]. 
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5. Numerical example 

In this part of paper the design of a heat exchanger is presented. The rectangular 

domain of dimensions 2L × L (L = 2 m) shown in Figure 2 has been considered. 

The hatched areas of width h = 0.5 m each (see Fig. 2) will not be perturbed (this is 

the structural part of the problem). Thermal conductivity equals λ = 330 W/(mK). 

On the top of the domain the Robin condition is taken into account where the heat 

transfer coefficient is α = 20 W/(m
2
K) and the ambient temperature is T∞ = 25°C. 

On the bottom of the rectangular, the heat flux presents a piecewise linear distribu-

tion where the smallest value is qb1 = 2000 W/m
2
 and the greatest value is 

qb2
 = 20 000 W/m

2
, on the remaining parts of the boundary the Neumann condition 

qb = 0 is prescribed. The initial boundary has been divided into 90 linear boundary 

elements. The grid of 450 internal nodes has been used. 

 

 
Fig. 2. Domain considered 

On the holes created via topological derivative, the Robin condition  is prescribed 

where α
ε
 = 200 W/(m

2
K) and T ε

∞
 = 30°C. Hence DT will be evaluated using the 

formula (see (4)) 
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2

T
D x T T T

ε ε

∞
− α −  (15) 

In order to obtain the design of the domain, the following iterative process is 

carried out in 7 steps: 

Step 1. Provide the initial domain 

Step 2. Solve the problem using the BEM 

Step 3. Calculate DT at internal points (using Eq. (15)) 

Step 4. Select the point with the greatest absolute values of DT 

Step 5. On the selected point create a hole  

Step 6. Check the stop criterion 

Step 7. Repeat the procedure until a given stopping criteria is obtained 
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The iterative process is stopped if the maximum temperature of domain Ω 
decreases below 170°C. During each iteration, 2.5% of material is eliminated. 
The boundary of the holes has been divided into 6 linear boundary elements 
(see Fig. 3). The temperature distribution obtained during the iterative process 
is presented in Figures 4, 6, 8, 10, 12 whereas Figures 5, 7, 9, 11 and 13 show 
the topological derivative received  during the iterative process. 
 

 
Fig. 3. Hexagonal hole 

 
 Fig. 4. Temperature distribution at  i = 0 Fig. 5. Topological derivative at i = 0 

  

 Fig. 6. Temperature distribution at i = 1 Fig. 7. Topological derivative at i = 1 

 

 Fig. 8. Temperature distribution at i = 2 Fig. 9. Topological derivative at i = 2 
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 Fig. 10. Temperature distribution at i = 3 Fig. 11. Topological derivative at i = 3 

 
 Fig. 12. Temperature distribution at i = 4 Fig. 13. Topological derivative at i = 4 

This example shows how the topological derivative can be used to design heat 
exchangers in order to determinate where the cooling channels (holes) must be 
positioned. It is worth noting, that the distance between the holes gradually grows. 
The final result was obtained at iteration i = 4, as can be seen in Figures 12 and 13. 
This result was compared with a similar problem available in the literature [1] that 
was calculated by means of a FEM. In both cases the final designs are close. 

6. Conclusions 

In the present work the topological derivative is used to obtain the project of 
the heat exchanger. The topological-shape sensitivity method gives information 
concerning the positions where the holes (cooling channels) must be created. 
The temperature field in each iteration is calculated by means of the boundary 
element method in its direct version. The connection of the topological derivative 
and the BEM is a good tool that can be applied for solving design engineering 
problems in heat transfer. 

References 

[1] Navotny A.A., Feijoo R.A., Taroco E., Padra C., Topological-shape sensitivity analysis, Comput. 
Methods Appl. Mech. Eng. 2003, 192, 803-829. 

[2] Marczak R.J., Topology optimization and boundary elements - a preliminary implementation 

for linear heat transfer, Engineering Analysis with Boundary Elements 2007, 31, 793-802. 



K. Freus, S. Freus 12 

[3] Anflor C.T.M., Marczak R.J., Topological sensitivity analysis for two-dimensional heat transfer 

problems using the Boundary Element Method, Optimization of Structures and Components 

Advanced Structured Materials 2013, 43, 11-33. 

[4] Freus K., Freus S., Determination of an optimal shape of domain using the topological derivative 
and Boundary Element  Method, Journal of Applied Mathematics and Computational Mechanics 

2014, 13(4), 41-48. 

[5] Brebbia C.A., Dominguez J., Boundary Elements. An Introductory Course, CMP, McGraw-Hill 

Book Company, London 1992. 

[6] Majchrzak E., Boundary Element Method in Heat Transfer, Publ. of Czestochowa University 

of Technology, Czestochowa 2001 (in Polish). 


