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Abstract. This article is devoted to the problem of simulation of random variables distrib-

uted according to Young measures associated with piecewise affine functions determined 

on bounded intervals. We start with simple functions which can take on a finite number of 

different values with inverse images being the intervals or their unions. We present some 

formal results connected with related discrete Young measures and propose an algorithm 

for generating random variables having such distributions. Next, based on these results 

we introduce an algorithm designed for approximation of Young measures in various, 

more general situations. We also present an example  where a Young measure associated 

with a piecewise affine function is approximated with the help of computer simulations. 

In this benchmarking problem the theoretical results are compared with the ones obtained 

in the Monte Carlo experiment. 
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1. Introduction 

Young measures occur while investigating limits of sequences of bounded fast 

oscillating functions, for example the minimizing sequences of energy functionals 

that do not attain their infima. Such sequences are divergent in the strong topology, 

but they are weakly∗ convergent to a function, which does not minimize the energy 

functional. Laurence Chisolm Young proposed in [1] enlarging the space of func-

tions to the measure spaces and to consider generalized limits of the minimizing 

sequences there (in fact, the generalized limits of the composition of the elements 

of the minimizing sequence with a continuous function satisfying certain growth 

conditions). This allows one to analyse the oscillatory nature of the sequences 

and therefore the underlying microstructure arising for example in phase transition 

in certain elastic crystals.  Young called these measure limits “generalized trajecto-

ries”; today they are called “Young measures” (sometimes also “relaxed trajecto-

ries” or “transition probabilities”). 
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The main problem concerning Young measures is that obtaining their explicit 

form, i.e. calculating the weak
∗
 limit of an appropriate sequence of functions is 

rather difficult. A somewhat simpler approach has been proposed in [2]; it uses  the 

notion of a quasi-Young measure, which is easier to calculate and is quite often 

equal to the “original” Young measure. In particular, the (quasi-)Young measure 

associated with a constant function is merely a Dirac measure concentrated at the 

point being the value of that function. On the other hand, the generalized limits of 

the sequences minimizing multi-well potentials are exactly the same as Young 

measures concentrated on the wells (see for instance [3, 4]). Thus discrete Young 

measures play important role both in the theory and applications. 

So, the theoretical analysis of Young measures in many important cases can be 

very difficult or even impossible to perform. Usually in such a case when the formal 

analysis of a probabilistic model is extremely complex, the Monte Carlo simulation 

approach can be adopted, see e.g. [5-7]. Here the term “Monte Carlo simulation” 

refers to the analysis of a stochastic phenomenon through the generation of sample 

realizations (observations) of the random variable under study with the help of 

computer codes involving random-number generators. The generation of  random 

numbers distributed according to specific Young measure (or its good approxima-

tion) has two important possible applications. First, it makes it possible to  analyse 

the “empirical” distribution related to this probability measure in a classical statis-

tical manner. Second, such Young-measure generators can be used for simulation 

analysis of complex stochastic systems with only some factors (parameters and/or 

variables) distributed according to this probability distribution. 

In this paper we propose an algorithm for performing such simulations in a case 

where the Young measure is associated with a simple function. Next, the intro-

duced generator is used for approximation of Young measures in some more 

general situations. 

The article is organized as follows. In Section 2 we recall the definition and basic 

properties of the discrete Young measures and give an example of such a measure 

associated with a simple function. The reader who wants go deeper into the subject 

is referred to [8, 9]. A very concise introduction based entirely on [9] may also 

be found in the section 2 in [2]. In Section 3, the Young measures’ generator is de-

scribed and some benchmarking experiments are discussed. In these experiments 

we generate Young measures which have a known explicit form, so we can compare 

the simulation and the formal results. Section 4 is devoted to the approximation 

of Young measures in some more general cases. Here we present some examples 

of statistical analysis of an empirical distribution that approximates the underlying 

(true) Young measure associated with specific piecewise functions. 

2. Quasi-Young measures associated with affine functions 

Let Ω be an open, bounded subset of ℝ, �� - a Lebesgue measure on Ω, � > 0 - 

Lebesgue measure of Ω. Denote ����� ∶=
�
� ��. Let �: Ω → ℝ be an affine func-
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tion, that is, a function of the form u��� = �� + 	,�,	 ∈ ℝ. Observe that the range 

of � is a subset of a certain compact subset 
 of ℝ. The space of continuous 

functions from 
 to ℝ will be denoted by ��
, ℝ�. 
 

Definition 2.1. We say that a family of probability measures �����∈� is a quasi-

Young measure associated with an affine function �, if for every  ∈ ��
, ℝ� 
there holds an equality 

 � ��������� = � ��������.��  

Proposition 2.2. (a) let �: Ω → ℝ be a constant function: ∀	� ∈ Ω	���� = �. Then 

the quasi-Young measure associated with � is the Dirac measure ��. (b) let �: Ω → ℝ be an affine function: ∀	� ∈ Ω	���� = �� + 	,	with �,	 ∈ ℝ	and � ≠ 0. 

Then the quasi-Young measure associated with � is the measure absolutely contin-

uous with respect to the Lebesgue measure �� on 
. Its density is equal to �
�
��
�
�. 

Proof. Using the change of variable theorem we get 

 � ���� ������ = � ������� ����� = ��� = � ���� ���, 

which proves (a). Analogously, 

 � ���� ������ = � ��� + 	�� ����� = �

�
� ���� ��

�
���, 

which is (b).                                                                                                             ∎ 

Corollary 2.3. Denote by ��	�	
��  an open partition of Ω, such that ⋃ cl�	 = clΩ�	
� , 

where “cl” stands for “closure”. Denote by �	 the Lebesgue measure of the set �	, � = 1,2,… ,�. Let � be a simple function on Ω. We can write ���� = ∑ �	�������	
� , �	 ∈ ℝ, � = 1,2,… ,�. Here � denotes, as usual in such context, the characteristic 

function of the set  . Using the mathematical induction we can prove that the 

quasi-Young measure associated with � of the form 

 �� =
�
�∑ �	�	
� ��� . 

Further, let for each � = 1,2,… ,�, �	��� = �	� + 	, that is � is affine on �	, 
with �	 ≠ 0 and ⋃ cl�	(�	) = 
�	
� , and such that ���� ∶= ∑ �	����������	
�  is con-

tinuous on Ω. Let �!�,!�� be a partition of the set of indices �1,2,… ,�� such that 

if � ∈ !� then the function �	 is strictly increasing; otherwise - strictly decreasing. 

Choose and fix such	" ∈ !�,� ∈ !�, that 
� ∶= #�� ∶= ������ ∩ ������ ≠ ∅. Then 

we have ⋃ 
� = 
��
�  and the quasi-Young measure associated with � is absolutely 

continuous with respect to the Lebesgue measure on 
 with density 
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$��� =

%&'
&(�
��� �

���

�,		  if �∈��
��

⋮
�
��� �

���

�,  if �∈��
��

). 
Remark 2.4. Observe that in the above cases the quasi-Young measure does not 

depend on the variable �. Such a (quasi-)Young measure is called homogeneus. 

Therefore in what follows we will omit the subscript � in the symbol ��. 

Remark 2.5. By the theorem 6.1 of [2], the quasi-Young measures associated with 

the functions of the above proposition and its corollary are equal to the Young 

measures associated with these functions. 

Example 2.6. Let Ω ∶= �−2,2� and define 

���� ∶= *−2,	if � ∈ (−2,−1] 

1,	if � ∈ (−1,0]

−1,	if � ∈ �0,1+
0,	if � ∈ (1,2]

). 
Then the Young measure associated with � is of the form  

 � =
�
� ��� +

�
� �� +

�
� ��� +

�
� ��. 

Example 2.7. Define 

 ���� ∶=

%&'
&( 4�,	if	� ∈ (0, �

�
]	� + �

�
,	if	� ∈ (�

�
, 	
�
]

−2� +
�
� ,	if	� ∈ .�� , 2/

−�

�
���,	if	� ∈ (2,4)

.) (1) 

Here Ω = �0,4�, 
 = cl$�Ω� = 00,2+, ����� ∶=
�
���. 

Then we have 

1 ���������

�
= 1 ��������




�
�� +1 ��� ������

�




+1 ���� ��


�
. 

Therefore � = $�����, where 

 $��� = *��

��
,	if	y ∈ [0, �



]

�

��
,	if	y ∈ (�



, 1]

�


,	if	y ∈ �1,2+ .) (2) 
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3. Generating of Young measures associated with piecewise functions 

The idea of the Monte Carlo simulation is to draw a sample i.e. a realization of 

the stochastic process {Z1, Z2, . . .Zm} composed of independent random variables 

with the same distribution as the random phenomenon under study. Based on this 

sample, important  information concerning stochastic characteristics of the exam-

ined distribution can be derived with the help of statistical-inference tools. Indeed, 

by the strong law of large numbers, for any Borel function f for which the expected 

value Ef(Z) exists, the average )(
1

1∑ ==

m

i
im

Zf
m

f  will almost surely (a.s.) con-

verge to Ef(Z). In particular, when the sample size m tends to infinity, we can quite 

precisely evaluate all moments of the investigated distribution (e.g. expected value, 

variance) as well as probabilities of random events. The latter can be used for 

evaluating the theoretical frequencies of various intervals, so we can also obtain 

a histogram that approximates  the distribution density function. The approxima-

tion of the density function is the better, the larger is the observation sequence, but 

in the Monte Carlo experiment we can usually receive as many observations as 

we need. 

Now let us consider simple functions f defined on a bounded interval I, 

and such that their values have inverse images being the intervals or their unions. 

By Proposition 2.2, Corollary 2.3 and Remark 2.5, the Young measures associated 

with such functions are the discrete probability distributions of a very simple form 

which can be easily simulated by computer procedures.  In Monte Carlo simula-

tions, the sample of  random variables having such distributions can be generated 

according the following routine DYM(f , I, N). 

 
Set k = 1; 

While n ≤ N Do Step 1 to Step 3 

Step 1. Set t = Random(I) 

Step 2. Set z[k]=f(t) 

Step 3. Set k = k + 1 

Set sample = (z[1],...,z[N]) 

Return sample 

 

The procedure DYM is called with three arguments: 

– the formula f that defines the simple function and 

– its domain, i.e. the interval I, 

– the sample size N. 

 The subroutine Random(I) returns a pseudorandom number generated 

according to the uniform probability distribution defined on I. 

 The routine DYM can also be used in order to approximate Young measures 

in cases that are a bit more sophisticated. It is well known from the measure theory 

that any Borel function can be approximated with the simple function (more 



A. Grzybowski, P. Puchała 18 

precisely, it is a limit of a proper sequence of simple functions) Thus it can be 

expected that for a large class of functions, we can approximate related Young 

measures by a properly chosen simple function. In this paper, such an approxima-

tion will be addressed to as simple approximation, meaning the simple function 

that is used for the approximation. Here we propose the following construction 

of simple approximation for any piecewise function f determined on the interval I. 

– Split the interval I = (a,b) into n subintervals equal in length I1,...,In , 

– Choose the sequence yi = f(xi), i = 1,...,n, where xi is the centre of the subinterval Ii , 

– As simple approximation of f choose the following simple function: 

 ���� ∶= ∑ �!�"����,�!
�    x∈I 

Below we present routine AppYM(f, a, b, N, n) that realizes the above approx-

imation and returns a sample from the (approximated) Young measure related to 

any piecewise function. 
 

Set k = 1; 

Set jump = (b-a)/n 

While k ≤ n Do Step 1 to Step 3  

Step 1. Set t = a+(k-1/2)*jump 

Step 2. Set y[k] = f(t) 

Step 3. Set k = k+1 

Set i=1; 

While i ≤ N Do Step 4 to Step 6 

Step 4. Set k = RandomI({1,..,n}) 

Step 5. Set z[i] = y(k) 

Step 6. Set i = i+1 

Set sample = (z[1],...,z[N]) 

Return sample  

 
The arguments  for the AppYM are the following: 

– the formula f that defines the simple function, 

– the simple-function's domain, i.e. the endpoints of the interval I = (a,b), 

– the number n of subintervals  I1,...,In , 

– the sample size N. 

The subroutine  RandomI(A) returns a pseudorandom integer number gener-

ated according to the uniform probability distribution defined on A - a finite subset 

of integers. 

4. Examples of Monte Carlo approximation of Young measures 

In this section we present examples of possible applications of the AppYM 

routine. Let us start with Example 2.7. The graph of the function f considered 

in that example (see Eq. (1)) is presented in Figure 1. 



Remarks about discrete Young measures and their Monte Carlo simulation 19

 

Fig. 1. Graph of piecewise function f given by (1) 

The probability density function g of the Young measure associated with this 

function is given by formula (2) and its graph is presented in Figure 2. 

 

 

Fig. 2. Graph of the PDF g given by (2) 

Now we perform a benchmarking experiment with the help of the routine AppYM. 

We assume the following arguments in our simulation: N = 1 000 000 and 

n = 20 000. As a result we obtain the following histogram that approximates the 

function g, see (2). 

 

 

Fig. 3. The histogram that approximates the function g given by (2). 

The data were generated with the help of the routine AppYM 
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We see that the approximation is really good. In order to verify this impression 

more precisely, we formally state the hypothesis that the data was obtained from 

random variable distributed according to the Young measure given by g, see (2). 

To verify this hypothesis, we adopt the Pearson goodness-of-fit chi-square test. For 

that purpose we split the observation region into 200 separate classes and compute 

the usual Pearson χ
2
 statistics. We receive χ

2  
= 198.2, a value that is close to the 

mean of the χ
2
 distribution with 199 degrees of freedom. This fact confirms that 

our generator works really well. 

5. Conclusions 

The formal analysis of Young measures is usually a very difficult task. On the 

other hand, in various engineering problems it is very important to know at least 

some probabilistic characteristics of these measures. One of the possible solutions 

in such a case is to make use of the Monte Carlo simulation. We show that with 

the help of a rather simple computer routine, we can generate random numbers 

distributed according to the Young measure associated with any piecewise func-

tion. The benchmarking example presented in Section 4 confirmed that the pro-

posed method is quite effective and may be very useful. It should also be empha-

sized that the described simulations are very fast - it takes seconds to receive data 

containing 1 000 000 numbers. Statistical analysis of such data set may be a very 

important source of information about the considered Young measure. 
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