
Journal of Applied Mathematics and Computational Mechanics 2015, 14(4), 31-39

www.amcm.pcz.pl p-ISSN 2299-9965

 DOI: 10.17512/jamcm.2015.4.04 e-ISSN 2353-0588

NEW IMAGE DESCRIPTOR FROM EDGE DETECTOR

AND BLOB EXTRACTOR

Rafał Grycuk, Rafał Scherer, Marcin Gabryel

Institute of Computational Intelligence, Czestochowa University of Technology
 Częstochowa, Poland

rafal.grycuk@iisi.pcz.pl, rafal.scherer@iisi.pcz.pl, marcin.gabryel@iisi.pcz.pl

Abstract. In this paper we present a novel approach for image description. The method

is based on two well-known algorithms: edge detection and blob extraction. In the edge

detection step we use the Canny detector. Our method provides a mathematical description

of each object in the input image. On the output of the presented algorithm we obtain

a histogram, which can be used in various fields of computer vision. In this paper we

applied it in the content-based image retrieval system. The simulations proved the effec-

tiveness of our method.

Keywords: image description, content-based image retrieval, CBIR, edge detection, blob

extraction, blob detection

1. Introduction

Along with the development of the Internet and a possibility of capturing imag-

es, a new area of expertise was created. Accurate image content description [1, 2]

is one of the greatest challenges of computer science. Effective browsing or retriev-

ing images is used in various fields of life, e.g. medicine, crime prevention, face

recognition, robotics, military and many others. Precise mathematical description

of visual objects is difficult because we need to overwhelm the semantic gap

between human recognition and recognition performed by computers. Image feature

extraction can be based on various attributes, i.e. color [3], texture [4], shape [5, 6],

local features [7], multiresolution wavelet analysis [8-11] and their improvements

[12, 13]. It seems to be interesting to develop a novel method for object descrip-

tion. Such mathematical features can be used in further processing of various sys-

tems. The following subsections briefly describe the most important algorithms

used in our method.

1.1. Edge detection

In the literature we can find many methods for edge detection. The Canny edge

detector [14-16] is one of the most commonly used image processing methods

R. Grycuk, R. Scherer, M. Gabryel 32

for detecting edges. It takes as input a gray scale image, and produces as output

an image showing the positions of tracked intensity discontinuities. The algorithm

runs in four separate steps [17]:

1. Noise reduction. The image is smoothed by applying an appropriate Gaussian

filter

2. Finding the intensity gradient of the image. During this step the edges should be

marked where gradients of the image have large magnitudes

3. Non-maxima suppression. If the gradient magnitude at a pixel is larger than

those at its two neighbors in the gradient direction, mark the pixel as an edge.

Otherwise, mark the pixel as the background

4. Edge tracking by hysteresis. Final edges are determined by suppressing all

edges that are not connected to genuine edges.

The effect of the Canny operator is determined by parameters:

• The width of the Gaussian filter used in the first stage directly affects the results

of the Canny algorithm

• The thresholds used during edge tracking by hysteresis. It is difficult to provide

a generic threshold that works well on all images.

The Canny detector basically finds edges where the pixel intensity changes (image

gradient). Before edge detection the non-important edges need to be removed.

Thus the Gaussian smoothing method is applied. To approximate gradient for both

directions (x, y) the following formula was used [17]:

−

−

−

=

101

202

101

GxK , (1)

−−−

=

121

000

121

GyK . (2)

The edge strengths can be calculated by the Euclidean distance measure (3) or

Manhattan distance measure (4) [17]:

 22

yx
GGG += , (3)

 yx
GGG += , (4)

where
x
G is gradient in horizontal direction, y

G is gradient in vertical direction.

The edge direction can be described by the following formula [17]:

=Θ

x

y

G

G
arctan . (5)

New image descriptor from edge detector

Figure 1A shows an input image and Figure 1B represents the edge detected image.

As can be seen, the edges were detected correctly,

is low.

1.2. Blob detection

Blob detection is one of the basic methods of image processing. It allows to

detect a list of blobs (objects) in the image. Unfortunately, obtaining homogeneous

objects from an image as a list of pixel

we deal with a heterogeneous background, i.e. the objects containing multicolored

background. There are many methods for extracting objects (blobs) from images

[18-22]. In this paper we use methods implemented in

These algorithms are described by Andrew Kirillov

Convex full, Left/Right Edges, Top/Bottom

Fig. 2. Comparison of methods for blob detection used in the AForge.NET library

New image descriptor from edge detector and blob extractor

Fig. 1. Edge detection

Figure 1A shows an input image and Figure 1B represents the edge detected image.

As can be seen, the edges were detected correctly, because the image gradient

Blob detection is one of the basic methods of image processing. It allows to

detect a list of blobs (objects) in the image. Unfortunately, obtaining homogeneous

objects from an image as a list of pixels is a challenging task. Especially, when

we deal with a heterogeneous background, i.e. the objects containing multicolored

background. There are many methods for extracting objects (blobs) from images

22]. In this paper we use methods implemented in the AForge.NET library.

These algorithms are described by Andrew Kirillov [23] and exist in four variants:

Convex full, Left/Right Edges, Top/Bottom Edges, Quadrilateral, shown in Figure 2.

. Comparison of methods for blob detection used in the AForge.NET library

33

Figure 1A shows an input image and Figure 1B represents the edge detected image.

because the image gradient

Blob detection is one of the basic methods of image processing. It allows to

detect a list of blobs (objects) in the image. Unfortunately, obtaining homogeneous

s is a challenging task. Especially, when

we deal with a heterogeneous background, i.e. the objects containing multicolored

background. There are many methods for extracting objects (blobs) from images

the AForge.NET library.

and exist in four variants:

Edges, Quadrilateral, shown in Figure 2.

. Comparison of methods for blob detection used in the AForge.NET library [23]

R. Grycuk, R. Scherer, M. Gabryel 34

Figure 2A illustrates Quadrilateral detection method. As can be seen, round edges

of the objects are not detected correctly. Much better results are obtained by the

Top/Bottom Edges algorithm (Fig. 2C). Edges of objects are detected mostly cor-

rectly, with individual exceptions. The Left/Right Edges method behaves similarly

(Fig. 2B). The last method has a problem with the detection of vertices inside

figures, e.g. star-shaped objects (Fig. 2D).

2. Proposed method for image description

In this section we present the novel method for image description. Our approach

is based on two well-known algorithms: edge detection and blob extraction.

The first step is to perform the edge detection method. This step is crucial because

the correctness of detected edges will have effect on the blob extraction step. Thus,

the selection on two input parameters of Canny detector is a key stage. In our

experiments we select these parameters empirically for each image class (dino-

saurs, car cards, mountains, etc.). The second stage of our method is blob detection

and blob extraction. Both of them are tightly connected. The first one allows to

locate the blob (object), and the second one performs the object extraction. We use

the Quadrilateral algorithm for this step. It allows to determine blob properties such

as: ROI (Region of Interest), center of gravity, edge points. The last property is

extremely important in the next step of our method. From four edge points

extracted by the Quadrilateral we calculate the following distances: Top, Bottom,

Left, Right. For example, the top is distance between two most distant points in top

image direction. The remaining distances are calculated in the same way. Last

stage of our algorithm creates the histogram for each based on calculated distances.

Histograms are often used in Content-Based Image Retrieval (CBIR) for compar-

ing images (e.g. with Euclidean or Manhattan distance), thus such histograms

can be used as feature extraction stage of CBIR. These steps can be described

by the following pseudo-code:

INPUT: Input image

OUTPUT: Histograms

1. edgeDetectedImage := DetectEdgesByCanny(thresh, threshlinking);

2. DetectBlobs(edgeDetectedImage);

3. blobs := ExtractBlobs(edgeDetectedImage);

4. ForEach ����� 	�	����� do
{

���� ∶= CalculateDistance	����� .
�����������������, �����;

������� ∶= CalculateDistance	����� .
�����������������, 	��������;
�����: = CalculateDistance	����� .
�����������������,			������;

						���ℎ��: = CalculateDistance	����� .
�����������������,				���ℎ���;

							ℎ��������� ≔ CreateHistogram	���� , 	������� , ����� 	, ���ℎ���;
}

New image descriptor from edge detector

Fig. 3. Object histogram which provides a mathematical description of a visual object

In Figure 3 we can distinguish four bins which describe four edges of the

detected object (blob). Such mathematical description allows to compare content of

visual objects (and images) by measuring

axis contains the edges labeled by direction (top, bottom, left, right). The vertical

axis provide the calculated distance of the edge.

Fig.

Figure 4 shows a block diagram of the proposed method. The output histograms

is a mathematical description of the input image, thus our meth

as a preprocessing stage for a more complex image retrieval system.

3. Experimental results

In this section we present the results of the experiments. The simulation environ

ment were written by the authors in .NET Framework with AForge.NET library

New image descriptor from edge detector and blob extractor

. Object histogram which provides a mathematical description of a visual object

In Figure 3 we can distinguish four bins which describe four edges of the

detected object (blob). Such mathematical description allows to compare content of

visual objects (and images) by measuring distance between them. The horizontal

axis contains the edges labeled by direction (top, bottom, left, right). The vertical

rovide the calculated distance of the edge.

Fig. 4. Block diagram of the proposed method

Figure 4 shows a block diagram of the proposed method. The output histograms

is a mathematical description of the input image, thus our method can be used

as a preprocessing stage for a more complex image retrieval system.

Experimental results

In this section we present the results of the experiments. The simulation environ

were written by the authors in .NET Framework with AForge.NET library

35

. Object histogram which provides a mathematical description of a visual object

In Figure 3 we can distinguish four bins which describe four edges of the

detected object (blob). Such mathematical description allows to compare content of

distance between them. The horizontal

axis contains the edges labeled by direction (top, bottom, left, right). The vertical

Figure 4 shows a block diagram of the proposed method. The output histograms

od can be used

In this section we present the results of the experiments. The simulation environ-

were written by the authors in .NET Framework with AForge.NET library

36

and C# as programming language. Test images for simulations were taken from the

Corel database. We selected images from various classes and divided each class

in two sets. First set (90

(10%) serves as query images.

 To evaluate performance of our method we based our experiments on two

established measures: Precision and Recall. In order to calculate these measures

we need to use the following sets of images

• AI - set of appropriate images,

• RI - set of returned images,

• Rai - properly returned images,

• Iri - improperly returned images,

• Anr - proper not returned,

• Inr - improper not returned images.

Precision and recall can b

 Fig. 5. Performance measures diagram

During our experiments we obtained the following results, presented in Table 1.

The measures were normalized and presented as percentage values. As can be seen,

the algorithm proved to be effective and the

cantly low.

The presented method seems to be effective in image retrieval purposes.

We have implemented the results evaluation system and we also examine our result

empirically. Figure 6 shows the result of a single query image. Image with border

is the query image. Our method was compared with multiresolution wavelet analysis
and provided better results in image retrieval. Methods based on wavelet analysis

R. Grycuk, R. Scherer, M. Gabryel

and C# as programming language. Test images for simulations were taken from the

Corel database. We selected images from various classes and divided each class

(90% of image class) is used for indexing and second on

(10%) serves as query images.

To evaluate performance of our method we based our experiments on two

established measures: Precision and Recall. In order to calculate these measures

following sets of images (see Fig. 5):

set of appropriate images,

set of returned images,

properly returned images,

improperly returned images,

proper not returned,

improper not returned images.

Precision and recall can be calculated by the following formulas:

 ��������� 	
|���|

|���	�	���|
,

 ���
�� 	
|���|

|���	����|
.

. Performance measures diagram Fig. 6. Query results

During our experiments we obtained the following results, presented in Table 1.

The measures were normalized and presented as percentage values. As can be seen,

the algorithm proved to be effective and the rai factor is high and the

The presented method seems to be effective in image retrieval purposes.

We have implemented the results evaluation system and we also examine our result

empirically. Figure 6 shows the result of a single query image. Image with border

Our method was compared with multiresolution wavelet analysis

and provided better results in image retrieval. Methods based on wavelet analysis

and C# as programming language. Test images for simulations were taken from the

Corel database. We selected images from various classes and divided each class

% of image class) is used for indexing and second one

To evaluate performance of our method we based our experiments on two

established measures: Precision and Recall. In order to calculate these measures

 (6)

 (7)

. Query results

During our experiments we obtained the following results, presented in Table 1.

The measures were normalized and presented as percentage values. As can be seen,

factor is high and the anr signifi-

The presented method seems to be effective in image retrieval purposes.

We have implemented the results evaluation system and we also examine our result

empirically. Figure 6 shows the result of a single query image. Image with border

Our method was compared with multiresolution wavelet analysis

and provided better results in image retrieval. Methods based on wavelet analysis

New image descriptor from edge detector and blob extractor 37

(such as SURF, see [24, 25], or Haar wavelets) provide image description based

on keypoints. Such description is effective when we need to compare images and

find corresponding keypoints on both images (determine similarity). Nevertheless,

when facing the image retrieval problem, we need to describe object, not entire

image (object + background). Unfortunately, the keypoints are often located in the

background, hence provide irrelevant data in the indexation phase.

Table 1

Simulation results for multi query [%]

Image Id AI rai iri anr Precision Recall

1 (1).jpg 33 21 12 7 13 7

1 (2).jpg 33 31 3 18 3 19

1 (20).jpg 33 21 12 7 13 7

1 (21).jpg 33 22 12 8 14 7

2 (1).jpg 33 27 7 7 7 8

2 (10).jpg 33 28 6 6 6 7

2 (11).jpg 33 24 9 9 10 10

2 (17).jpg 33 28 6 6 6 7

3 (1).jpg 33 23 11 12 11 12

3 (10).jpg 33 23 10 11 11 12

3 (11).jpg 33 27 7 11 7 12

3 (15).jpg 33 29 4 17 4 17

4. Conclusions

The presented algorithm is a contribution to image description and content-

based image retrieval. The experiments proved the effectiveness of our method.

The algorithm requires two input parameters, which describe the intensity of the

object edges. The method is based on four main steps: edge detection, blob extrac-

tion, factors calculation and histogram creation. The presented approach can be

used for content-based image retrieval tasks and image description generally.

For the purposes of this paper we applied this method in a CBIR system with satis-

factory results. Our approach allowed to describe each object separately instead

of the entire image thus, the resulting precision increased significantly.

Presented method was compared with wavelet analysis and provide better

results. Multiresolution wavelet analysis can be added (in the future work) to our

method after the object extraction stage is completed, because keypoints will be

detected only on the extracted object. Such approach will provide two histograms

(two comparing attributes), which would significantly improve the results.

R. Grycuk, R. Scherer, M. Gabryel 38

Acknowledgment

The work presented in this paper was supported by a grant BS/MN-1-109-301/14/P

“Clustering algorithms for data stream - in reference to the Content-Based Image

Retrieval methods (CBIR)”.

References

[1] Bazarganigilani M., Optimized image feature selection using pairwise classifiers, Journal
of Artificial Intelligence and Soft Computing Research 2011, 1, 147-153.

[2] Drozda P., Sopyła K., Górecki P., Online crowdsource system supporting ground truth datasets
creation, Computing 12th Conference, ICAISC2013, Zakopane, June 9-13, 2013, eds. L. Rut-
kowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, J.M. Zurada, 532-539.

[3] Meskaldji K., Boucherkha S., Chikhi S., Color quantization and its impact on color histogram
based image retrieval accuracy, Networked Digital Technologies 2009, 515-517.

[4] Huang J., Kumar S.R., Mitra M., Zhu W.J., Zabih R., Image indexing using color correlograms,
Computer Vision and Pattern Recognition 1997, 762-768.

[5] Śmietański J., Tadeusiewicz R., Łuczyńska E., Texture analysis in perfusion images of prostate
cancer - A case study, International Journal of Applied Mathematics and Computer Science
2010, 20(1), 149-156.

[6] Veltkamp R.C., Hagedoorn M., State of the art in shape matching, [in:] Principles of Visual
Information Retrieval, ed. M.S. Lew, Springer, London - Berlin - Heidelberg 2001, 87-119.

[7] Zalasiński M., Cpałka K., New approach for the on-line signature verification based on method
of horizontal partitioning, Artificial Intelligence and Soft Computing 2013, 342-350.

[8] Grossmann A., Wavelet transforms and edge detection, Stochastic Processes in Physics and
Engineering, Series Mathematics and Its Applications 1988, 42, 149-157.

[9] Mallat S., Wen Liang Hwang, Singularity detection and processing with wavelets, IEEE Trans-
actions on Information Theory 1992, 38(2), 617-643.

[10] Krim H., Tucker D., Mallat S., Donoho D., On denoising and best signal representation,
IEEE Transactions on Information Theory 1999, 45(7), 2225-2238.

[11] Mallat S.G., A theory for multiresolution signal decomposition: the wavelet representation,
Pattern Analysis and Machine Intelligence, IEEE Transactions 1989, 11, 7, 674-693.

[12] Bay H., Tuytelaars T., Van Gool L., Surf: Speeded up robust features, Computer Vision-ECCV
2006, 404-417.

[13] Evans C., Notes on the OpenSURF Library, University of Bristol, Tech. Rep., 2009.

[14] Canny J., A computational approach to edge detection, Pattern Analysis and Machine Intelli-
gence, IEEE Transactions 1986, 8(6), 679-698.

[15] Bao P., Zhang D., Wu X., Canny edge detection enhancement by scale multiplication, Pattern
Analysis and Machine Intelligence 2005, 27(9), 1485-1490.

[16] Wang B., Fan S., An improved Canny edge detection algorithm, Computer Science and Engi-
neering 2009, 1, 497-500.

[17] Luo Y., Duraiswami R., Canny edge detection on NVIDIA CUDA, Computer Vision and
Pattern Recognition Workshops 2008, 1-8.

[18] Grycuk R., Gabryel M., Korytkowski M., Scherer R., Voloshynovskiy S., From single image to
list of objects based on edge and blob detection, Artificial Intelligence and Soft Computing
2014, 8468, 605-615.

[19] Damiand G., Resch P., Split-and-merge algorithms defined on topological maps for 3D image
segmentation, Graphical Models 2003, 65(1), 149-167.

New image descriptor from edge detector and blob extractor 39

[20] Grycuk R., Gabryel M., Korytkowski M., Romanowski J., Scherer R., Improved digital image
segmentation based on stereo vision and mean shift algorithm, Parallel Processing and Applied
Mathematics 2014, 8384, 433-443.

[21] Grycuk R., Gabryel M., Korytkowski M., Scherer R. Content-based image indexing by data
clustering and inverse document frequency, Beyond Databases, Architectures, and Structures
2014, 424, 374-383.

[22] Liu Y., Zhang D., Lu G., Ma W.Y., A survey of content-based image retrieval with high-level
semantics, Pattern Recognition 2007, 40(1), 262-282.

[23] Kirillov A., Detecting some simple shapes in images, AForge .NET, 2010.

[24] Bay H., Speeded-up robust features (SURF), Computer Vision and Image Understanding 2008,
110, 3, 346-359.

[25] Terriberry T., French L., Helmsen J., GPU accelerating speeded-up robust features, Proceedings
of 3DPVT 2008, 355-362.

