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Abstract. The paper presents the results of the numerical analysis of a simple vehicle pass-
ing over a simply supported bridge span. The bridge is modelled by an Euler-Bernoulli 
beam. The vehicle is modelled as a linear, visco-elastic oscillator, moving at a constant 
speed. The system is described by a set of differential equations of motion and solved 
numerically using the Runge-Kutta algorithm. The results are compared with the solution 
obtained in commercial FEM software using the Newmark-β method. The parameters of 
the system are taken from the existing bridge span and from the existing railway vehicle. 
Simulations are also performed with a concentrated force model of the vehicle. 
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1. Introduction 

Dynamic analysis of the bridge-vehicle interaction is an important part of design 
and research work, particularly for high-speed railways. A moving vehicle induces 
vibration of a bridge span. The bridge in turn affects the vibration of the vehicle. 
Thus, we have a complex, mutually coupled dynamic system, whose exact analysis 
is very complicated. The higher the train speed, the greater the dynamic impact to 
the bridge. A bridge-vehicle interaction analysis requires the dynamic model of the 
vehicle. In the design practice, the dynamic effects of loads are simplified [1]. 
A series of concentrated force models are commonly used. 

The paper deals with the problem of a linear, single-mass oscillator moving 
over a simply supported beam. The oscillator can represent a simple vehicle and 
the beam can simulate a bridge span. The system is described by differential equa-
tions of motion. A mathematical formulation and numerical solution is presented. 
Two numerical methods are used and compared: the Runge-Kutta method of the 
fourth row and the Newmark-β method. The parameters of the system are taken 
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from the existing bridge (a temporary steel span of 30 m long) and from the exist-
ing railway vehicle (EN57 traction unit). The vibrations of the midpoint of the 
beam as well as the mass of the oscillator are concerned. 

The model is shown in Figure 1. The oscillator consists of the mass M (vehicle 
body), the spring k and the damper η (vehicle suspension) and moves with a con-
stant speed v. The beam has a constant stiffness EI. The unit weight of the beam is 
m and the damping factor is c. Displacements w(x,t) and u(t) correspond to the 
beam and to the vehicle respectively. 
 

 
Fig. 1. A model of a single-mass oscillator moving over a simply supported beam 

2. Formulation of the problem 

A typical problem of a linear dynamics of a discrete, multi degree of freedom 
(MDOF) system is described by a second order differential equation of motion: 

 [ ]0 0( ) ( ) ( ) ( ), ,t t t t t t t a+ + = ∈ +Mu Cu Ku Pɺɺ ɺ , (1) 

with initial conditions 0 0(0) , (0)= =u u u uɺ ɺ . Matrices M, C, K are the mass, damp-

ing and stiffness matrices respectively, P(t) is an external force vector and 
( ), ( ), ( )t t tu u uɺ ɺɺ are the displacement, velocity and acceleration vectors, respectively. 

Equation (1) can be formulated using the d’Alembert principle, the Hamilton’s 
principle or the Lagrange equation of second order. Details can be found in e.g. [2]. 

For the purpose of this paper, a theoretical formulation of equations of motion 
was made on the basis of [3]. In the reference, the solution was provided using the 
Bubnov-Galerkin method. Basic assumptions are as follows: 
a) only the vertical displacements are possible, 
b) the system is linear and time invariant (LTI system), 
c) the deflection of the beam is described by the sine function and only the mid-

point of the beam is concerned, 
d) the reference level for the vibration of the oscillator is the static equilibrium 

of the mass: ustat = Mg/k, 
e) the oscillator is in full contact with the beam (no separation is possible). 
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2.1. Force vibration of the oscillator-beam system 

According to aforementioned assumptions and designations depicted in Figure 1, 
the equation of motion of the oscillator becomes: 

 ( )
2

2

( ) ( ) ( , )
( ) ( , ) 0,

d u t du t dw vt t
M k u t w vt t

dt dtdt
η  + − + − = 

 
 (2) 

where x = vt. The equation of motion of the beam can be written as: 

 ( )
4 2

4 2

( , ) ( , ) ( , )
( ) ,

w x t w x t w x t
EI m c F t x vt

tx t
δ

∂ ∂ ∂
+ + = −

∂∂ ∂
 (3) 

where δ(x – vt) is the shifted Dirac delta function for x0 = vt and F(t) is the dynamic 
force, transmitted between the oscillator and the beam (interaction force). F(t) can 
be easily obtained from the oscillator equilibrium as follows (Fig. 2): 

 
2

2

( )
( ) ( ) ( )k

d u t
F t f t f t Mg M

dt
η= + = − . (4) 

 

Fig. 2. Forces acting on the elements of the oscillator (vertical motion only) 

According to the assumption that the deflection shape of the beam is described 
by a sine function, the function w(x,t) can be expressed as: 

 ( ) ( ), sin
x

w x t q t
l

π
= , (5) 

with zero boundary conditions w(0,t) = 0 and w(l,t) = 0. The variable q(t) is 
a Lagrange coordinate, which describes the displacement in time of the beam. 
Putting (5) into (2) and (3) and making transformations provided in [3], we finally 
obtain the system of equations, which describes the vibrations of a coupled 
oscillator-beam system: 
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The unknown functions u(t) and q(t) can only be numerically determined. 
The initial conditions are as follows: 
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( ) ( )
0

0

0 0, 0,

0 0, 0.

t

t
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q
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u

dt

=

=

= =

= =

 (7) 

2.2. Free vibrations of the oscillator and the beam 

Since the oscillator passed over the beam, both systems perform free vibrations. 
In this case, the equations for the oscillator and for the beam become: 

 

2

2

4 2

4 2

( ) ( )
( ) 0,

( , ) ( , ) ( , )
0.

d u t du t
M ku t

dtdt

w x t w x t w x t
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η+ + =

∂ ∂ ∂
+ + =
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 (8) 

These are the homogeneous equations with constant coefficients. Unknowns 
 

( , )w x t  and ( )u t  are the free response functions of the beam and of the oscillator 

respectively. Assuming the solution of the second of equations (8) as: 

 ( , ) ( )sin
x

w x t q t
l

π
= , (9) 

we obtain: 
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The general integral can be derived as follows: 

 

2 2

2

2 24 4
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( ) cos sin ,
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( ) cos sin ,
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t
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m mml ml

η η η
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−

−
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 (11) 

where A, B, C, D are the constants to be determined. Each of the above solutions 
represent free responses in time of a single degree of freedom (SDOF) systems 
with under-critical damping (see for example ref. [2]). At the moment of time the 
oscillator leaves the beam (t = t1), the functions ( )q t  and ( )q t  and its first deriva-

tives must be equal. The same applies to the functions ( )u t  and ( )u t . So in order 

to determine the constants A, B, C and D, the following initial conditions can be 
applied: 

 
1 1

1 1

1 1
1 1

( ) ( )
( ) ( ) and ,

( ) ( )
( ) ( ) and .

t t t t
t t t t

t t t t
t t t t

dq t dq t
q t q t

dt dt

du t du t
u t u t

dt dt

= =
= =

= =
= =

= =

= =

 (12) 

Because of (6), constants A, B, C and D can only be numerically determined. 

3. Numerical solution methods 

Two numerical methods were used: the Runge-Kutta (R-K) and the Newmark-β 
method. The R-K method was applied to the equations (6) and (10) and was pro-
grammed in MATLAB (ode45 solver was used). The Newmark method allows for 
direct integration of equation (1) and is implemented in much engineering software 
of dynamic analysis of structures e.g. in SOFiSTiK FEM software. 

3.1. Runge-Kutta method 

The group of Runge-Kutta methods allow for a numerical solution of equations 
in the form of [4]: 

 0 0

( )
( , ( )), ( )

d t
f t t t

dt
= =

y
y y y . (13) 
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Before using the R-K method, equations (6) and (10) should be converted to 
an equivalent, 1st order form. It can be done using the substitution: 

 
( ) ( )

( ), ( )q u

dq t du t
v t v t

dt dt
= = , (14) 

which leads to a system of four equations: 
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or in a matrix form: 
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d t
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Denoting K = A–1
B and L = A–1

C, system of equations (16) can be written as: 

 
( )

( ) .
d t

t
dt

= +
z

Kz L  (17) 

A similar transformation can be performed for the equation (10). Substitution: 
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gives the system of four equations: 
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or in a matrix form: 
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( )

( ).
d t

t
dt

=
z

Kz  (21) 

The equation (17) is a linear, first order differential equation with variable coef-
ficients (matrices K and L depend on time t). The set of equations (21) in turn, 
consists of a linear, first order differential equations with constant coefficients. 
The forms of both equations are in accordance with the equation (13), so they can 
be solved numerically using R-K method. 
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3.2. Newmark-β method 

The method allows for the direct integration of equation (1), written in the dis-
crete time form: 

 1 1 1 1,n n n n+ + + ++ + =Mu Cu Ku Pɺɺ ɺ  (22) 

where un+1 = u(tn+1), tn+1 = tn + ∆t and ∆t - time step. We are looking for the solu- 

tion at the time step tn+1 (vectors 1 1 1, ,n n n+ + +u u uɺɺ ɺ ), having known the solution at the 
time step tn (vectors , ,n n nu u uɺɺ ɺ ). At first, a certain type of acceleration variation 
during an interval 1,n n nt t t t+ = + ∆  should be assumed [2]. Then, a variation of 
velocity and displacement can be derived. In 1959 N.M. Newmark [5] published 
the general formula for velocity and displacement vectors as: 

 

[ ]
2

1 1

1 1

( )
(1 2 ) 2

,2
(1 )

n n n n n

n n n n

t
t

t t

β β

γ γ

+ +

+ +

∆
= + ∆ + − +

= + ∆ − + ∆

u u u u u

u u u u

ɺ ɺɺ ɺɺ

ɺ ɺ ɺɺ ɺɺ  (23) 

where β and γ are the Newmark parameters. Specializing β and γ we obtain the 
special cases of the method, eg. an average acceleration method (β = 1/4 and 
γ = 1/2), a linear acceleration method (β = 1/6 and γ = 1/2). In practice β = 1/4 and 
γ = 1/2 are usually assumed, for which the method is unconditionally stable [2]. 

Following the transformation presented in [6], from (23)1 one can obtain: 

 1 12 2

1 1 1 1
1

2( ) ( )
n n n n n

tt t β ββ β+ +
 

= − − − − ∆∆ ∆  
u u u u uɺɺ ɺ ɺɺ . (24) 

Putting (24) into (23)2 gives: 

 1 1

1
1 1

2n n n n nt
t t

γ γ γ
β β β β+ +

   
= − + − + ∆ −   ∆ ∆    

u u u u uɺ ɺ ɺɺ . (25) 

Putting (24) and (25) into (22), we finally obtain: 

1 12 2

1 1 1 1
1

2( ) ( )

1 1
2

n n n n n

n n n

t tt t

t
t

γ
β β ββ β

γ γ γ
β β β

+ +

    
+ + = + + + − +    ∆ ∆∆ ∆     

    
+ + − + ∆ − ⋅    ∆     

M C K u P M u u u

C u u u

ɺ ɺɺ …

ɺ ɺɺ…

(26) 

From (26) we can calculate the unknown displacement vector un+1 using the 
solution in the time step tn (actual configuration). Then, using (24) and (25) we can 

calculate the unknown acceleration and velocity vectors, eg. 1n+uɺɺ  and 1n+uɺ . 
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A detail algorithm and stability discussion of the Newmark-β method can be 
found in aforementioned references, eg. [2, 5, 6]. 

4. Numerical simulations 

A temporary railway span of 30 m long was adopted as the bridge (Fig. 3). 
The model of the oscillator was defined on the basis of half of EN57 carriage (Fig. 4). 
 

 

Fig. 3. A considered bridge span: a) a scheme of the cross-section, b) the span in service 

 
Fig. 4. A scheme of EN57 train 

A SOFiSTiK FEM model of the system is shown in Figure 5. The bridge is mod- 
eled as a simply supported beam. The model is discretized on 61 nodes and 60 beam 
elements. Each element has 12 DOFS (3 rotations and 3 translations on each node). 
Because of the 3D model, a rotational degree of freedom (mx) of one support node 
was blocked additionally to avoid the global instability of the system. Physical 
parameters of the bridge and of the vehicle were identified in [7]. An Eigensystem 
Realization Algorithm was used [8]. The parameters are summarized in Table 1. 
 

 
Fig. 5. The FEM model of the system (SOFiSTiK): a) a single mass oscillator model 

of the vehicle, b) a concentrated force model of the vehicle 
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Table 1 
Physical parameters of the vehicle and of the bridge span 

Bridge span Vehicle 

Young modulus  E [GPa] 205 Mass M [t] 17.00 

Cross-section  A [m2] 0.3168 1st mode frequency  fv [Hz] 2.029 

Moment of inertia  Jy [m
4] 0.08143 1st mode damping  ξv [–] 0.0479 

Unit mass  m [t/m] 2.971 Stiffness  k  [kN/m] 2762.95 

1st mode frequency  fb [Hz] 4.07 Damping coefficient  ηv [kNs/m] 20.762 

1st mode damping  ξb [–] 0.0117   

Damping coefficient  cb [kNs/m] 1.744   

 
The damping coefficient of the beam was calculated as cb = ξbcbkr = ξb4πmfb 

, 
where cbkr is the critical damping of the beam. Similarly, the damping coefficient 

of the oscillator was calculated as ηv = ξvξvkr = ξv4πMfv 
. The time step was 

assumed as ∆t = 0.002 s. This value is enough for the stability of both methods. 
Figures 6-10 show the results. The vibration of the midpoint of the beam as well 

as the mass of the oscillator are presented. For 5 kph (“quasi-static” case, Fig. 6), 
the maximum displacement of the beam and of the oscillator equals the static dis-
placement of the beam: wst = Mgl

3/48EI = 5.62·10–3 m, where g is the acceleration 
of gravity. 
 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
-7

-6

-5

-4

-3

-2

-1

0

1

2
Midpoint of the beam

time  [s]

d
is

p
la

c
e
m

e
n
t 

[m
m

]

 Runge-Kutta

Newmark

a)

      

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
-7

-6

-5

-4

-3

-2

-1

0

1

2
Mass of the oscillator

time  [s]

d
is

p
la

c
e

m
e

n
t 

[m
m

]

Runge-Kutta

Newmark

b)

 
Fig. 6. Vibration of the bridge span (a) and of the vehicle (b) for the velocity of 5 kph 
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Fig. 7. Vibration of the bridge span (a) and of the vehicle (b) for the velocity of 60 kph 
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Fig. 8. Vibration of the bridge span for the velocity of 60 kph: a) time interval 0.5÷1.3 s 

(maximum displacement), b) time interval 1.7÷2.4 s (free response) 
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Fig. 9. Vibration of the bridge span (a) and of the vehicle (b) for the velocity of 160 kph 
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Fig. 10. Vibration of the bridge span for the velocity of 160 kph: a) time interval 

0.1÷0.5 s (maximum displacement), b) time interval 0.4÷1.6 s (free response) 

5. Conclusions 

An application of differential equations and two numerical methods of solution 
in bridge dynamics is presented. The problem of a linear, single-mass oscillator 
moving over a simply supported beam is discussed. The physical parameters of the 
model were taken from the existing bridge span and the existing railway vehicle. 
A vertical motion of the midpoint of the beam as well as the mass of the oscillator 
is concerned, so a whole bridge-vehicle system is a 2-DOFs system. 

Both numerical solutions (eg. the Runge-Kutta and the Newmark-β solution) are 
similar. A slight difference can be seen in the oscillator free response amplitudes for 
the velocity of 160 kph (see Fig. 9b). The higher the speed, the greater the vibration 
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of the bridge and of the vehicle’s body, both of the forced and the free response 
range. The solution for a concentrated force model of the vehicle is also presented. 
Some differences in comparison with the oscillator model of a vehicle can be seen, 
as far as the amplitude and phase of the bridge vibration are concerned (see Figs. 8 
and 10). This is because the ‘concentrated force’ formulation omits the inertial 
terms of moving mass. Moreover, due to the lack of suspension, the dynamic 
bridge-vehicle interaction effects are not taken into account. It should be noted, 
however, that the differences are not large. From the technical point of view (eg. for 
the design practice), the ‘concentrated force’ model is safe and does not overesti-
mate the results at the same time (for the conditions considered in this paper). 

It should be finally said that both models of vehicle adopted in this paper differ 
from an actual railway loading. Single load models are valid only for short spans, 
carrying a single bogie or even a single wheelset. A more accurate analysis of long 
span bridges requires considering moving load series, spaced in bogies or wheelset 
distances [9, 10]. A more advanced analysis, which takes into account 2D or 3D 
models of vehicles with two levels of suspension, is proposed by Klasztorny [11]. 
Because of a complex mathematical formulation of these problems, the direct 
integration Newmark-β method (rather than R-K methods) is commonly used for 
a numerical solution. 
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