ANALYSIS OF THE QUEUEING NETWORK WITH A RANDOM WAITING TIME OF NEGATIVE CUSTOMERS AT A NON-STATIONARY REGIME

Victor Naumenko ${ }^{1}$, Mikhail Matalytski ${ }^{2}$, Dmitry Kopats ${ }^{1}$
${ }^{1}$ Faculty of Mathematics and Computer Science, Grodno State University
Grodno, Belarus
${ }^{2}$ Institute of Mathematics, Czestochowa University of Technology Częstochowa, Poland
victornn86@gmail.com,m.matalytski@gmail.com

Abstract

In the article a queueing network (QN) with positive customers and a random waiting time of negative customers has been investigated. Negative customers destroy positive customers on the expiration of a random time. Queueing systems (QS) operate under a heavy-traffic regime. The system of difference-differential equations (DDE) for state probabilities of such a network was obtained. The technique of solving this system and finding mean characteristics of the network, which is based on the use of multivariate generating functions was proposed.

Keywords: G-network, positive customers, negative customers, random waiting time, heavy-traffic regime, state probabilities, mean characteristics, non-stationary regime

1. Network description

Consider an open G-network [1] with n single-queues QS. An independent Poisson flow of positive customers with rate $\lambda_{0 i}^{+}$and a Poisson flow of negative customers with rate $\lambda_{0 i}^{-}$arrive to $\mathrm{QS} S_{i}$ from outside (system S_{0}), $i=\overline{1, n}$. All arriving to QS customer flows are assumed to be independent. The probability that the positive customer serviced in S_{i} during time $[t, t+\Delta t)$, if at the current moment t in the system there are k_{i} customers, are equal to $\mu_{i}^{+}\left(k_{i}\right) \Delta t+o(\Delta t)$. The positive customer gets serviced in S_{i} with probability $p_{i j}^{+}$move to QS S_{j} as a positive customer and with probability $p_{i j}^{-}$- as a negative customer and with probability $p_{i 0}=1-\sum_{j=1}^{n}\left(p_{i j}^{+}+p_{i j}^{-}\right)$come out of the network to the external environment, $i, j=\overline{1, n}$.

A negative customer is arriving to QS increases the length of the queue of negative customers for one, and requires no service. Each negative customer, located in i-th QS, stays in the queue for a random time according to a Poisson process of rate $\mu_{i}^{-}\left(l_{i}\right), i=\overline{1, n}$. By the end this time, the negative customer destroys one positive customer in the QS S_{i} and leaves the network. If after this random time in the system there are no positive customers, then a given negative customer leaves the network, without exerting any influence on the operation of the network as a whole. Wherein the probability that in QS S_{i}, negative customer leaves the queue during $[t, t+\Delta t)$, on the condition that, in this QS at time t there are l_{i} negative customers, equals $\mu_{i}^{-}\left(l_{i}\right) \Delta t+o(\Delta t)$.

The network state at time t described by the vector $k(t)=(k, l, t)=$ $=\left(\left(k_{1}, l_{1}, t\right),\left(k_{2}, l_{2}, t\right), \ldots,\left(k_{n}, l_{n}, t\right)\right)$, which forms a homogeneous Markov process with a countable number of states, where the state $\left(k_{i}, l_{i}, t\right)$ means that at time t in QS S_{i}, there are k_{i} positive customers and l_{i} negative customers, $i=\overline{1, n}$. We introduce the vectors $(k, t)=\left(k_{1}, k_{2}, \ldots, k_{n}, t\right)$ and $(l, t)=\left(l_{1}, l_{2}, \ldots, l_{n}, t\right), I_{i}$ - vector, which is i-th component equal to 1 , all the others are $0, i=\overline{1, n}$.

Negative customers may describe the behavior of computer viruses, whose impact on the information (positive customers) occurs through a random time.

It should be noted that analisys at a stationary regime of QN with positive and negative customers excluding random queueing time, and also with signals has been carried out in [2,3] and at non-stationary regime in [4-5].

2. State probabilities of the network operating under a heavy-traffic regime

Lemma. Let $P(k, l, t)$ - state probability (k, l) at time t. State probabilities of considered network are satisfy system of DDE:

$$
\begin{align*}
& \frac{d P(k, l, t)}{d t}=-\sum_{i=1}^{n}\left[\lambda_{0 i}^{+}+\lambda_{0 i}^{-}+\mu_{i}^{+}\left(k_{i}\right)\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\left(l_{i}\right)\right] P(k, l, t)+ \\
& +\sum_{i=1}^{n} \lambda_{i i}^{+} u\left(k_{i}(t)\right) P\left(k-I_{i}, l, t\right)+\sum_{i=1}^{n} \lambda_{i j}^{-} u\left(l_{i}(t)\right) P\left(k, l-I_{i}, t\right)+ \\
& +\sum_{i=1}^{n} \mu_{i}^{+}\left(k_{i}+1\right) p_{i 0} P\left(k+I_{i}, l, t\right)+\sum_{i=1}^{n} \mu_{i}^{-}\left(l_{i}+1\right) P\left(k+I_{i}, l+I_{i}, t\right)+ \tag{1}\\
& \quad+\sum_{i=1}^{n} \mu_{i}^{-}\left(l_{i}+1\right)\left(1-u\left(k_{i}(t)\right)\right) P\left(k, l+I_{i}, t\right)+
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{\substack{i=1 \\
i}}^{n} \sum_{j=1}^{n} \mu_{i}^{+}\left(k_{i}+1\right) u\left(k_{j}(t)\right) p_{i j}^{+} P\left(k+I_{i}-I_{j}, l, t\right)+ \\
& \quad+\sum_{i, j=1}^{n} \mu_{i}^{+}\left(k_{i}+1\right) u\left(l_{j}(t)\right) p_{i j}^{-} P\left(k+I_{i}, l-I_{j}, t\right)
\end{aligned}
$$

where $\mu_{i}^{+}(0)=0, \mu_{i}^{-}(0)=0$.
Proof. The possible transitions of our Markov process in the state $(k, l, t+\Delta t)$ during time Δt :

1) from the state Δt, in this case into QS S_{i} for the time Δt a positive customer will arrive with probability $\lambda_{0 i}^{+} u\left(k_{i}(t)\right) \Delta t+o(\Delta t), i=\overline{1, n}$;
2) from the state $\left(k, l-I_{i}, t\right)$, while to the $\mathrm{QS} S_{i}$ for the time Δt a negative customer will arrive with probability $\lambda_{0 i}^{-} u\left(l_{i}(t)\right) \Delta t+o(\Delta t), i=\overline{1, n}$;
3) from the state $\left(k+I_{i}, l, t\right)$, in this case the positive customer comes out of the network to the external environment with probability $\mu_{i}^{+}\left(k_{i}+1\right) p_{i 0} \Delta t+o(\Delta t)$, $i=\overline{1, n}$;
4) from the state $\left(k+I_{i}, l+I_{i}, t\right)$, in the given case into QS S_{i} the negative customer, destroys in the QS S_{i} the positive customer, leaves the network; the probability of such an event is equal to $\mu_{i}^{-}\left(l_{i}+1\right) \Delta t+o(\Delta t), i=\overline{1, n}$;
5) from the state $\left(k, l+I_{i}, t\right)$, while in the $\mathrm{QS} S_{i}$, the residence time in the queue of the negative customer finished, if in time t there were $l_{i}+1$ negative customers and there were no positive customers; the probability of such an event is equal to $\mu_{i}^{-}\left(l_{i}+1\right)\left(1-u\left(k_{i}(t)\right)\right) \Delta t+o(\Delta t), i=\overline{1, n}$;
6) from the state $\left(k+I_{i}-I_{j}, l, t\right)$, in given case after finishing the service of the positive customer in the $\mathrm{QS} S_{i}$ it moves to the $\mathrm{QS} S_{j}$ again as a positive customer with probability $\mu_{i}^{+}\left(k_{i}+1\right) u\left(k_{j}(t)\right) p_{i j}^{+} \Delta t+o(\Delta t), i=\overline{1, n}$;
7) from the state $\left(k+I_{i}, l-I_{j}, t\right)$, in this case the positive customer, which is serviced in QS S_{i}, moves to QS S_{j} as a negative customer, the probability of such an event is equal to $\mu_{i}^{+}\left(k_{i}+1\right) u\left(l_{j}(t)\right) p_{i j}^{-} \Delta t+o(\Delta t), i=\overline{1, n}$;
8) from the state (k, l, t), while in each QS $S_{i}, i=\overline{1, n}$, do not arrive any positive nor any negative customers, and in which for the time Δt any customer didn't service, no negative customer will come out of the queue; the probability of such event is equal to

$$
1-\sum_{i=1}^{n}\left[\lambda_{0 i}^{+}+\lambda_{0 i}^{-}+\mu_{i}^{+}\left(k_{i}\right)\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\left(l_{i}\right)\right] \Delta t+o(\Delta t), i=\overline{1, n} ;
$$

9) from other states with probability $o(\Delta t)$.

Then, using the formula of total probability, we can write

$$
\begin{aligned}
& P(k, l, t+\Delta t)=\sum_{i=1}^{n} \lambda_{0 i}^{+} u\left(k_{i}(t)\right) P\left(k-I_{i}, l, t\right) \Delta t+\sum_{i=1}^{n} \lambda_{0 i}^{-} u\left(l_{i}(t)\right) P\left(k, l-I_{i}, t\right) \Delta t+ \\
&+\sum_{i=1}^{n} \mu_{i}^{+}\left(k_{i}+1\right) p_{i 0} P\left(k+I_{i}, l, t\right) \Delta t+\sum_{i=1}^{n} \mu_{i}^{-}\left(l_{i}+1\right) P\left(k+I_{i}, l+I_{i}, t\right) \Delta t+ \\
&+\sum_{i=1}^{n} \mu_{i}^{-}\left(l_{i}+1\right)\left(1-u\left(k_{i}(t)\right)\right) P\left(k, l+I_{i}, t\right) \Delta t+ \\
&+\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}^{+}\left(k_{i}+1\right) u\left(k_{j}(t)\right) p_{i j}^{+} P\left(k+I_{i}-I_{j}, l, t\right) \Delta t+ \\
&+\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}^{+}\left(k_{i}+1\right) u\left(l_{j}(t)\right) p_{i j}^{-} P\left(k+I_{i}, l-I_{j}, t\right) \Delta t+ \\
&+\left(1-\sum_{i=1}^{n}\left[\lambda_{0 i}^{+}+\lambda_{0 i}^{-}+\mu_{i}^{+}\left(k_{i}\right)\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\left(l_{i}\right)\right] \Delta t\right) P(k, l, t)+o(\Delta t)
\end{aligned}
$$

Taking the limit $\Delta t \rightarrow 0$, we obtain a system of equations for state probabilities of the network. (1). The lemma is proved.

We will assume, that all queuing network systems are single-queue, and customer service duration in the QS has an exponential distribution with the rate μ_{i}^{+}. Consequently, in this case $\mu_{i}^{+}\left(k_{i}\right)=\mu_{i}^{+} u\left(k_{i}\right), i=\overline{1, n}$.

Denote by $\Psi_{2 n}(z, t)$, where $z=\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1, \cdots}, z_{2 n}\right)$, the generating function of the dimension of $2 n$:

$$
\begin{align*}
& \Psi_{2 n}(z, t)=\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{n}=0}^{\infty} \sum_{l_{1}=0}^{\infty} \ldots \sum_{l_{n}=0}^{\infty} P\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1,}, \ldots, z_{2 n}\right) z_{1}^{k_{1}} \ldots z_{n}^{k_{n}} z_{n+1}^{l_{1}} \ldots z_{2 n}^{l_{n}}= \tag{2}\\
& =\sum_{k_{1}=0}^{\infty} \ldots \sum_{k_{n}=0}^{\infty} \sum_{l_{1}=0}^{\infty} \ldots \sum_{l_{n}=0}^{\infty} P(k, l, t) \prod_{i=1}^{n} z_{i}^{k_{i}} z_{n+i}^{l_{i}},|z|<1,
\end{align*}
$$

the summation is taking for each k_{i}, l_{i} from 0 to $\infty, i=\overline{1, n}$.
We will assume that $k_{i}(t)>0, l_{i}(t)>0, \forall t>0, i=\overline{1, n}$.
Multiplying each of the equations (1) to $\prod_{m=1}^{n} z_{m}^{k_{m}} z_{m}^{l_{m}}$ and summing up all possible values k_{m} and l_{m} from 1 to $+\infty, m=\overline{1, n}$. Here the summation for all k_{m} and l_{m} is taken from 1 to $+\infty$, i.e. all summands in (2), for which in the network state $k(t)$ there are components $k_{m}=0$ and $l_{m}=0$, due to the assumptions put forward above. Because, for example

$$
P\left(k_{1}, \ldots, k_{m-1}, 0, k_{m+1}, \ldots, k_{n}, l_{1}, \ldots, l_{m-1}, 0, l_{m+1}, \ldots, l_{n}, t\right)=0, m=\overline{2, n}
$$

Then we obtain

$$
\begin{align*}
& \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \frac{d P(k, l, t)}{d t} \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}= \\
& =-\sum_{i=1}^{n}\left(\lambda_{0 i}^{+}+\lambda_{0 i}^{+}+\mu_{i}^{+}\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\right) \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \cdots \sum_{m=1}^{\infty} P(k, l, t) \prod_{m}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \\
& +\sum_{i=1}^{n} \lambda_{0 i}^{+} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} P\left(k-I_{i}, l, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \\
& +\sum_{i=1}^{n} \lambda_{0 i}^{-} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \ldots \sum_{i}^{\infty} P\left(k, l-I_{i}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \\
& +\sum_{i=1}^{n} \mu_{i}^{+} p_{i 0} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \ldots\left(k+I_{i}, l, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \\
& +\sum_{i=1}^{n} \mu_{i}^{-} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \cdots \sum_{i}^{\infty} P\left(k+I_{i}, l+I_{i}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \\
& +\sum_{i=1}^{n} \mu_{i}^{-}\left(1-u\left(k_{i}(t)\right)\right) \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \ldots \sum_{n}^{\infty} P\left(k, l+I_{i}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \\
& +\sum_{i=1}^{n} \sum_{\substack{j=1 \\
j \neq i}}^{n} \mu_{i}^{+} p_{i j}^{+} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} P\left(k+I_{i}-I_{j}, l, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}+ \tag{3}\\
& +\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}^{+} p_{i j}^{-} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \ldots \sum^{\infty} P\left(k+I_{i}, l-I_{j}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}
\end{align*}
$$

Let's consider the sums, contained on the right side of the relation (3). Let

$$
\sum_{1}(z, t)=-\sum_{i=1}^{n}\left(\lambda_{0 i}^{+}+\lambda_{0 i}^{+}+\mu_{i}^{+}\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\right) \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \ldots \sum_{m=1}^{\infty} P(k, l, t) \prod_{m}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}
$$

Then

$$
\sum_{1}(z, t)=-\sum_{i=1}^{n}\left(\lambda_{0 i}^{+}+\lambda_{0 i}^{+}+\mu_{i}^{+}\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\right) \Psi_{2 n}(z, t) .
$$

Similarly for the sum $\sum_{2}(z, t)=\sum_{i=1}^{n} \lambda_{0 i}^{+} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \cdots\left(k-I_{i}, l, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}$ we have:

$$
\sum_{2}(z, t)=\sum_{i=1}^{n} \lambda_{0 i}^{+} z_{i} \Psi_{2 n}(z, t)
$$

For the sum $\sum_{3}(z, t)=\sum_{i=1}^{n} \lambda_{0 i}^{-} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} P\left(k, l-I_{i}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}$ we obtain:

$$
\sum_{3}(z, t)=\sum_{i=1}^{n} \lambda_{0 i}^{-} z_{n+i} \Psi_{2 n}(z, t)
$$

The sum $\sum_{4}(z, t)=\sum_{i=1}^{n} \mu_{i}^{+} p_{i 0} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}}^{\infty} \ldots \sum_{1}^{\infty} P\left(k+I_{i}, l, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}$ has the form:

$$
\sum_{4}(z, t)=\sum_{i=1}^{n} \mu_{i}^{+} \frac{p_{i 0}}{z_{i}} \Psi_{2 n}(z, t)
$$

For the sum $\sum_{5}(z, t)=\sum_{i=1}^{n} \mu_{i}^{-} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1 l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} P\left(k+I_{i}, l+I_{i}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}} \quad$ we obtain:

$$
\sum_{5}(z, t)=\sum_{i=1}^{n} \mu_{i}^{-} \frac{1}{z_{i} z_{n+i}} \Psi_{2 n}(z, t)
$$

The sum $\sum_{6}(z, t)=\sum_{i=1}^{n} \mu_{i}^{-}\left(1-u\left(k_{i}(t)\right)\right) \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=11_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} P\left(k, l+I_{i}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}=0$.
For the sum $\sum_{7}(z, t)=\sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} \mu_{i}^{+} p_{i j}^{+} \sum_{k_{1}=1}^{\infty} \cdots \sum_{k_{n}=1}^{\infty} \sum_{l_{1}=1}^{\infty} \cdots \sum_{l_{n}=1}^{\infty} P\left(k+I_{i}-I_{j}, l, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}$ we shall obtain:

$$
\sum_{7}(z, t)=\sum_{i, j=1}^{n} \mu_{i}^{+} p_{i j}^{+} \frac{z_{j}}{z_{i}} \Psi_{2 n}(z, t)
$$

And, finally, for the last sum we shall have:

$$
\begin{gathered}
\sum_{8}(z, t)=\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}^{+} p_{i j}^{-} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=l_{1}=1}^{\infty} \sum_{l_{n}=1}^{\infty} \ldots \sum_{i=1}^{\infty} P\left(k+I_{i}, l-I_{j}, t\right) \prod_{m=1}^{n} z_{m}^{k_{m}} z_{n+m}^{l_{m}}= \\
=\sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i}^{+} p_{i j}^{-} \frac{z_{n+j}}{z_{i}} \Psi_{2 n}(z, t)
\end{gathered}
$$

Using these sums, we obtain a homogeneous linear differential equation:

$$
\begin{aligned}
\frac{d \Psi_{2 n}(z, t)}{d t}=- & \sum_{i=1}^{n}
\end{aligned}\left[\lambda_{0 i}^{+}+\lambda_{0 i}^{+}+\mu_{i}^{+}\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}-\lambda_{0 i}^{+} z_{i}-\lambda_{0 i}^{-} z_{n+i}-\frac{\mu_{i}^{-}}{z_{i} z_{n+i}}-~=~ \mu_{i}^{+} \sum_{j=1}^{n}\left(p_{i j}^{+} \frac{z_{j}}{z_{i}}+p_{i j}^{-} \frac{z_{n+j}}{z_{i}}\right)\right] \Psi_{2 n}(z, t) .
$$

Its solution has the form

$$
\begin{aligned}
\Psi_{n}(z, t)=C_{n} \exp \left\{-\sum_{i=1}^{n}\right. & {\left[\lambda_{0 i}^{+}+\lambda_{0 i}^{+}+\mu_{i}^{+}\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}-\lambda_{0 i}^{+} z_{i}-\lambda_{0 i}^{-} z_{n+i}-\frac{\mu_{i}^{-}}{z_{i} z_{n+i}}-\right.} \\
& \left.\left.-\mu_{i}^{+} \sum_{j=1}^{n}\left(p_{i j}^{+} \frac{z_{j}}{z_{i}}+p_{i j}^{-} \frac{z_{n+j}}{z_{i}}\right)\right] t\right\}
\end{aligned}
$$

Let's consider, that at the initial moment of time, the network is in a state $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, 0\right), \alpha_{i}>0, \alpha_{n+i}>0$,

$$
P\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, 0\right)=1, P\left(k_{1}, k_{2}, \ldots, k_{n}, l_{1}, l_{2}, \ldots, l_{n} 0\right)=0, \quad \forall \alpha_{i} \neq k_{i}, l_{i}, i=\overline{1, n} .
$$

Then the initial condition for the last equation will be

$$
\Psi_{2 n}(z, 0)=P\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, 0\right) \prod_{m=1}^{n} z_{m}^{\alpha_{m}} z_{n+m}^{\alpha_{n+m}}=\prod_{m=1}^{n} z_{m}^{\alpha_{m}} z_{n+m}^{\alpha_{n+m}},
$$

from which we obtain $C_{n}=1$.
Theorem. If at the initial moment of time the QN is in a state $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, 0\right)$, $\alpha_{i}>0, \alpha_{n+i}>0, i=\overline{1, n}$, then the expression for the generating function $\Psi_{2 n}(z, t)$, taking into account the expansions appearing in it exponent Maclaurin, has the form

$$
\begin{align*}
& \Psi_{2 n}(z, t)=a_{0}(t) \sum_{\substack{b_{j}=0 \\
j=1, n \\
j=1, j \neq i}}^{\infty} \sum_{\substack{c_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{d_{j}=0 \\
j=1, n, j j \neq i}}^{\infty} \sum_{\substack{g_{j}=0 \\
j=1, n, j \neq j}}^{\infty} \sum_{\substack{h_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{r_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{t^{i=1}}^{n}\left(b_{i}+c_{i}+d_{i}+g_{i}+h_{i}+r_{i}\right) \times \\
& \times \prod_{i=1}^{n}\left[\frac{\left(\prod_{j=1}^{n} p_{i j}^{+}\right)^{h_{i}}\left(\prod_{j=1}^{n} p_{i j}^{-}\right)^{r_{i}}}{b_{i}!c_{i}!d_{i}!g_{i}!h_{i}!r_{i}!}\left(\lambda_{0 i}^{+}\right)^{b_{i}}\left(\lambda_{0 i}^{-}\right)^{c_{i}}\left(\mu_{i}^{+}\right)^{k_{i}+r_{i}}\left(\mu_{i}^{-}\right)^{d_{i}+g_{i}} z_{i}^{\alpha_{i}+b_{i}-d_{i}-g_{i}+H-h_{i}-r_{i}} z_{n+i}^{\alpha_{n+i}+c_{i}-d_{i}+R}\right], \tag{4}
\end{align*}
$$

where

$$
H=\sum_{i=1}^{n} h_{i}, R=\sum_{i=1}^{n} r_{i}, a_{0}(t)=\exp \left\{-\sum_{i=1}^{n}\left[\lambda_{0 i}^{+}+\lambda_{0 i}^{+}+\mu_{i}^{+}\left(1-p_{i i}^{+}\right)+\mu_{i}^{-}\right] t\right\} .
$$

Proof. We have:

$$
\Psi_{n}(z, t)=a_{0}(t) \prod_{i=1}^{5} a_{i}(z, t) \prod_{m=1}^{n} z_{m}^{\alpha_{m}} z_{n+m}^{\alpha_{n+m}},
$$

where

$$
\begin{aligned}
& a_{1}(z, t)=\exp \left\{t \sum_{i=1}^{n} \lambda_{0 i}^{+} z_{i}\right\}=\prod_{i=1}^{n} \sum_{b_{i}=0}^{\infty} \frac{\left[\lambda_{0 i}^{+} t z_{i}\right]^{b_{i}}}{b_{i}!}=\sum_{b_{1}=0}^{\infty} \cdots \sum_{b_{n}=0}^{\infty} \prod_{i=1}^{n} \frac{\left[\lambda_{0 i}^{+} t z_{i}\right]^{b_{i}}}{b_{i}!}= \\
& =\sum_{b_{1}=0}^{\infty} \ldots \sum_{b_{n}=0}^{\infty} \frac{t^{b_{1}+b_{2}+\ldots+b_{n}}}{b_{1}!b_{2}!\ldots \cdot b_{n}!}\left(\lambda_{01}^{+}\right)^{b_{1}} \cdot \ldots \cdot\left(\lambda_{0 n}^{+}\right)^{b_{n}} z_{1}^{b_{1}} \cdot \ldots \cdot z_{n}^{b_{n}} \\
& a_{2}(z, t)=\exp \left\{t \sum_{i=1}^{n} \lambda_{0 i}^{-} z_{n+i}\right\}=\sum_{c_{1}=0}^{\infty} \ldots \sum_{c_{n}=0}^{\infty} \frac{t^{c_{1}+c_{2}+\ldots+c_{n}}}{c_{1}!c_{2}!\ldots \cdot c_{n}!}\left(\lambda_{01}^{-}\right)^{c_{1}} \cdot \ldots \cdot\left(\lambda_{0 n}^{-}\right)^{c_{n}} z_{n+1}^{c_{1}} \cdot \ldots \cdot z_{2 n}^{c_{n}} \\
& a_{3}(z, t)=\exp \left\{t \sum_{i=1}^{n} \mu_{i}^{-} \frac{1}{z_{i} z_{n+i}}\right\}=\prod_{i=1}^{n} \sum_{d_{i}=0}^{\infty} \frac{\left[\mu_{i}^{-} t z_{i}^{-1} z_{n+i}^{-1}\right]^{d_{i}}}{d_{i}!}= \\
& =\sum_{d_{1}=0}^{\infty} \ldots \sum_{d_{n}=0}^{\infty} \frac{t^{d_{1}+d_{2}+\ldots+d_{n}}}{d_{1}!d_{2}!\ldots \cdot d_{n}!}\left(\mu_{1}^{-}\right)^{d_{1}} \cdot \ldots \cdot\left(\mu_{n}^{-}\right)^{d_{n}} z_{1}^{-d_{1}} \cdot \ldots \cdot z_{n}^{-d_{n}} z_{n+1}^{-d_{1}} \cdot \ldots \cdot z_{2 n}^{-d_{n}} \\
& a_{4}(z, t)=\exp \left\{\sum_{i, j=1}^{n} t \mu_{i}^{+} p_{i j}^{+} \frac{z_{j}}{z_{i}}\right\}=\prod_{i=1}^{n} \prod_{j=1}^{n} \sum_{h_{i}=0}^{\infty} \frac{\left[t \mu_{i}^{+} p_{i j}^{+} z_{j} z_{i}^{-1}\right]^{h_{i}}}{h_{i}!}= \\
& =\sum_{h_{1}=0}^{\infty} \cdots \sum_{h_{n}=0}^{\infty} \prod_{i=1}^{n} \prod_{j=1}^{n} \frac{\left[t \mu_{i}^{+} p_{i j}^{+} z_{j} z_{i}^{-1}\right]^{h_{i}}}{h_{i}!}=\sum_{h_{1}=0}^{\infty} \ldots \sum_{h_{n}=0}^{\infty} t^{h_{1}} \cdot \ldots \cdot t^{h_{n}} \frac{\left(\prod_{j=1}^{n} \mu_{1}^{+} p_{1 j}^{+}\right)^{h_{1}} \cdot \ldots \cdot\left(\prod_{j=1}^{n} \mu_{n}^{+} p_{n j}^{+}\right)^{h_{n}}}{h_{1}!\ldots \cdot h_{n}!} \times \\
& \times z_{1}^{h_{1}+h_{2}+\ldots+h_{n}} z_{2}^{h_{1}+h_{2}+\ldots+h_{n}} \ldots . . z_{n}^{h_{1}+h_{2}+\ldots+h_{n}} z_{1}^{-h_{1}} z_{2}^{-h_{2}} \ldots z_{n}^{-h_{n}}= \\
& \sum_{h_{1}=0}^{\infty} \ldots \sum_{h_{n}=0}^{\infty} t^{h_{1}} \cdot \ldots \cdot t^{h_{n}} \frac{\left(\prod_{j=1}^{n} \mu_{1}^{+} p_{1 j}^{+}\right)^{h_{1}} \cdot \ldots \cdot\left(\prod_{j=1}^{n} \mu_{n}^{+} p_{n j}^{+}\right)^{h_{n}}}{h_{1}!\ldots \cdot h_{n}!} z_{1}^{H-h_{1}} \cdot \ldots \cdot z_{n}^{H-h_{n}},
\end{aligned}
$$

$$
\begin{aligned}
& a_{5}(z, t)=\exp \left\{\sum_{i, j=1}^{n} t \mu_{i}^{+} p_{i j}^{-} \frac{z_{n+j}}{z_{i}}\right\}=\prod_{i=1}^{n} \prod_{j=1}^{n} \exp \left\{t \mu_{i}^{+} p_{i j}^{-} \frac{z_{n+j}}{z_{i}}\right\}=\prod_{i=1}^{n} \prod_{j=1}^{n} \sum_{i=0}^{\infty} \frac{\left[\mu_{i}^{+} p_{i j}^{-} z_{n+j} z_{i}^{-1}\right]^{n}}{r_{i}!}= \\
& =\sum_{n=0}^{\infty} \cdots \sum_{r_{n}=0}^{\infty} \prod_{i=1}^{n} \prod_{j=1}^{n}\left[\frac{\left[\mu_{i}^{+} p_{i j}^{-} z_{n+j} z_{i}^{-1}\right]^{n_{n}}}{r_{i}!}=\sum_{n=0}^{\infty} \ldots \sum_{r_{n}=0}^{\infty} t^{n} \cdot \ldots \cdot t^{r_{n}} \frac{\left(\prod_{j=1}^{n} \mu_{1}^{+} p_{1 j}^{-}\right)^{n} \cdot \ldots \cdot\left(\prod_{j=1}^{n} \mu_{n}^{+} p_{n j}^{-}\right)^{r_{n}}}{r_{1}!\ldots \cdot r_{n}!} \times\right. \\
& \times z_{1}^{-r_{1}} z_{2}^{-r_{2}} \ldots z_{n}^{-r_{n}} z_{n+1}^{\eta+r_{2}+\ldots+r_{n}} z_{n+2}^{\eta_{1}+r_{2}+\ldots+r_{n}} \cdot \ldots \cdot z_{2 n}^{\eta_{1}+r_{2}+\ldots+r_{n}}
\end{aligned}
$$

Multiplying $a_{0}(t), a_{i}(z, t)$, and $\prod_{m=1}^{n} z_{m}^{\alpha_{m}} z_{n+m}^{\alpha_{n+m}}$ we will obtain an expression (4), $i=\overline{1,5}$.

State probability of $P\left(k_{1}, k_{2}, \ldots, k_{n}, l_{1}, l_{2}, \ldots, l_{n}, t\right)$ is the coefficient of $z_{1}^{k_{1}} z_{2}^{k_{2}}, \ldots, z_{n}^{k_{n}} z_{n+1}^{l_{1}}, z_{n+2}^{l_{2}}, \ldots, z_{2 n}^{l_{n}}$ in the expansion of $\Psi_{2 n}(z, t)$ in multiple series (4), with the proviso, that at the initial time the network is in a state $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, 0\right)$.

3. Finding the main characteristics

With the help of the generating function a different mean network characteristics can also be found at the transient regime. The expectation of a component with the number x of a multivariate random variable can be found, differentiating (4) by z_{x} and suppose $z_{i}=1, i=\overline{1,2 n}$. Therefore for the mean number of positive customers in the network system S_{x} we will use the relation:

$$
\begin{aligned}
& N_{x}^{+}(t)=\left.\frac{\partial \Psi_{2 n}(z, t)}{\partial z_{x}}\right|_{z=(1,1, \ldots, 1)}=
\end{aligned}
$$

$$
\begin{align*}
& \times\left(\alpha_{x}+b_{x}-d_{x}-g_{x}+H-h_{x}-r_{x}\right) \times \tag{5}\\
& \times \prod_{i=1}^{n}\left[\frac{\left(\lambda_{0 i}^{+}\right)^{b_{i}}\left(\lambda_{0 i}^{-}\right)^{k_{i}}\left(\mu_{i}^{+}\right)^{k_{i}+r_{i}}\left(\mu_{i}^{-}\right)^{d_{i}+g_{i}}}{b_{i}!c_{i}!d_{i}!g_{i}!h_{i}!r_{i}!}\left(\prod_{j=1}^{n} p_{i j}^{+}\right)^{h_{i}}\left(\prod_{j=1}^{n} p_{i j}^{-}\right)^{r_{i}}\right], x=\overline{1, n} . \tag{5}
\end{align*}
$$

The change of variables will be done in the expression $k_{x}=\alpha_{x}+b_{x}-d_{x}-g_{x}+H-h_{x}-r_{x}$, then $b_{x}=k_{x}-\alpha_{x}+d_{x}+g_{x}-H+h_{x}+r_{x}$ and

$$
\begin{gathered}
N_{x}^{+}(t)=a_{0}(t) \sum_{\substack{c_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{d_{j}=0}}^{\infty} \sum_{\substack{g_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{\frac{h_{j}=0}{1, n, j \neq i}}}^{\infty} \sum_{\substack{r_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{j=1, n, j \neq i}}^{\infty} k_{x} k_{j} \alpha_{j}-d_{j-g_{j}+H-h_{j}-r_{j}}^{j=1, n, j \neq i} \\
\times \sum_{i=1}^{n}\left(k_{i}-\alpha_{i}+2 d_{i}+c_{i}+2 g_{i}+2 h_{i}+2 r_{i}-H\right) \\
\times \prod_{i=1}^{n}\left[\frac{\left(\lambda_{0 i}^{+}\right)^{k_{i}-\alpha_{i}+d_{i}+g_{i}-H+h_{i}+r_{i}}\left(\lambda_{0 i}^{-}\right)^{c_{i}}\left(\mu_{i}^{+}\right)^{h_{i}+r_{i}}\left(\mu_{i}^{-}\right)^{d_{i}+g_{i}}}{\left(k_{i}-\alpha_{i}+d_{i}+g_{i}-H+h_{i}+r_{i}\right)!c_{i}!d_{i}!g_{i}!h_{i}!r_{i}!}\left(\prod_{j=1}^{n} p_{i j}^{+}\right)^{h_{i}}\left(\prod_{j=1}^{n} p_{i j}^{-}\right)^{r_{i}}\right], x=\overline{1, n}
\end{gathered}
$$

So like all network QS operating under heavy-traffic regime, we obtain, then $k_{i}=\alpha_{i}-d_{i}-g_{i}-h_{i}-r_{i}+H \geq 1$ and, consequently, $d_{i} \leq \alpha_{i}-g_{i}-h_{i}-r_{i}+H-1$, therefore

$$
\begin{gather*}
N_{x}^{+}(t)=a_{0}(t) \sum_{\substack{c_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{d_{j}=0 \\
j=\overline{1, n}, j \neq i}}^{\alpha_{j}-g_{j}-h_{j}-r_{j}+H-1} \sum_{\substack{g_{j}=0 \\
j=\overline{1, n}, j \neq i}}^{\infty} \sum_{\substack{h_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{r_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{k_{j}=1}^{\infty} k_{x} \times \\
\times \sum_{i=1}^{n}\left(k_{i}-\alpha_{i}+2 d_{i}+c_{i}+2 g_{i}+2 h_{i}+2 r_{i}-H\right) \\
\times \prod_{i=1}^{n}\left[\frac{\left(\lambda_{0 i}^{+}\right)^{k_{i}-\alpha_{i}+d_{i}+g_{i}-H+h_{i}+r_{i}}\left(\lambda_{0 i}^{-}\right)^{c_{i}}\left(\mu_{i}^{+}\right)^{h_{i}+r_{i}}\left(\mu_{i}^{-}\right)^{d_{i}+g_{i}}}{\left(k_{i}-\alpha_{i}+d_{i}+g_{i}-H+h_{i}+r_{i}\right)!c_{i}!d_{i}!g_{i}!h_{i}!r_{i}!}\left(\prod_{j=1}^{n} p_{i j}^{+}\right)^{h_{i}}\left(\prod_{j=1}^{n} p_{i j}^{-}\right)^{r_{i}}\right], x=\overline{1, n} \tag{6}
\end{gather*}
$$

Similarly, we can find the relation for the mean number of negative customers in the system S_{x}, that are awaiting:

$$
\begin{gather*}
N_{x}^{-}(t)=a_{0}(t) \sum_{\substack{b_{j}=0 \\
j=\overline{1, n}, j \neq i}}^{\infty} \sum_{\substack{d_{j}=0}}^{\alpha_{n+j}+R=1, n, j \neq i} \sum_{\substack{g_{j}=0 \\
j=1, n \\
j \neq j \neq i}}^{\infty} \sum_{\substack{h_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{r_{j}=0 \\
j=1, n, j \neq i}}^{\infty} \sum_{\substack{l_{j}=1 \\
j=1, n}}^{\infty} l_{x} \times \\
\times t^{\sum_{i=1}^{n}\left(l_{i}-\alpha_{n+i}+b_{i}+2 d_{i}+g_{i}+h_{i}+r_{i}-R\right)} \times \tag{7}\\
\times \prod_{i=1}^{n} \frac{\left(\lambda_{0 i}^{+}\right)^{b_{i}}\left(\lambda_{0 i}^{-}\right)^{k_{i}-\alpha_{n+i}+d_{i}-R}\left(\mu_{i}^{+}\right)^{h_{i}+r_{i}}\left(\mu_{i}^{-}\right)^{d_{i}+g_{i}}}{b_{i}!\left(l_{i}-\alpha_{n+i}+d_{i}-R\right)!d_{i}!g_{i}!h_{i}!r_{i}!}\left(\prod_{j=1}^{n} p_{i j}^{+}\right)^{h_{i}}\left(\prod_{j=1}^{n} p_{i j}^{-}\right)^{r_{i}} .
\end{gather*}
$$

Example. Let the number of QS in QN be $n=3$. Let external arrivals to the network of positive and negative customers respectively equal: $\lambda_{01}^{+}=1, \lambda_{02}^{+}=2$, $\lambda_{03}^{+}=0,5, \lambda_{01}^{-}=2, \lambda_{02}^{-}=1, \lambda_{03}^{-}=0,3$, and the service times of rates equal: $\mu_{1}^{+}=1$, $\mu_{2}^{+}=2, \mu_{3}^{+}=3$. Let negative customers stay in the queue for a random time, which
has an exponential distribution with parameters equal: $\mu_{1}^{-}=0,5, \mu_{2}^{-}=0,2, \mu_{3}^{-}=0,3$. We assume that the transition probability of positive customers $p_{i j}^{+}$has the form: $p_{12}^{+}=0,1, p_{13}^{+}=0,25, p_{21}^{+}=0,3, p_{23}^{+}=0,2, p_{31}^{+}=0,1, p_{32}^{+}=0,4$; transition probabilities of negative customers equal: $p_{12}^{-}=\frac{1}{8}, p_{13}^{-}=\frac{1}{7}, p_{21}^{-}=\frac{3}{11}, p_{23}^{-}=\frac{1}{9}, p_{31}^{-}=\frac{2}{9}, p_{32}^{-}=\frac{2}{11}$; then the probabilities $p_{i 0}$ will be equal respectively: $p_{10}=0,38, p_{20}=0,12$, $p_{30}=0,096$. In this case $a_{0}(t)=e^{-13,8 t}$.

The mean number of customers in network systems (in the queue and in servicing), on the condition that $N_{m}(0)=0, m=\overline{1, n}$, can be found by the formula (6), and the mean number of negative customers (waiting in the queue) may be found by the formula (7).

Figure 1 shows the chart of change of the mean number of positive customers in the QS S_{1} (straight line) and the chart of change of the mean number of negative customers (dash line), which are awaiting in the queue of the QS S_{1} respectively.

Fig. 1. The chats of changes of the mean number of positive customers and negative customers in the QS S_{1}

4. Conclusions

In the paper, the Markov network with positive customers with a random waiting time of negative customers at transient regime has been investigated. A technique of finding non-stationary state probabilities of the above network with single-queues of QS was proposed. It is based on the method of using the apparatus of multivariate generating functions. Relations for the mean characteristics depending on time of the considered G-network, on the condition that the network operates under heavy-traffic regime was obtained.

The practical significance of these results is that they can be used for modeling the functioning of various information networks and systems, a model of which is the aforementioned network taking into account the penetration of computer viruses into it.

References

[1] Gelenbe E., Product form queueing networks with negative and positive customers, Journal of Applied Probability 1991, 28, 656-663.
[2] Gelenbe E., G-networks with triggered customer movement, Journal of Applied Probability 1993, 30, 742-748.
[3] Gelenbe E., Pujolle G., Introduction to Queueing Networks, John Wiley, N.Y. 1998, 244.
[4] Matalytski M., Naumenko V., Non-stationary analysis of queueing network with positive and negative messages, Journal of Applied Mathematics and Computational Mechanics 2013, 12(2), 61-71.
[5] Matalytski M., Naumenko V., Investigation of G-network with random delay of signals at non-stationary behavior, Journal of Applied Mathematics and Computational Mechanics 2014, 13(3), 155-166.

